» » » » Лариса Шалковская - Основы физиологии сердца


Авторские права

Лариса Шалковская - Основы физиологии сердца

Здесь можно купить и скачать "Лариса Шалковская - Основы физиологии сердца" в формате fb2, epub, txt, doc, pdf. Жанр: Биология, издательство ЛитагентСпецЛитd5a9e1b1-0065-11e5-a17c-0025905a0812. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Лариса Шалковская - Основы физиологии сердца
Рейтинг:
Название:
Основы физиологии сердца
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Основы физиологии сердца"

Описание и краткое содержание "Основы физиологии сердца" читать бесплатно онлайн.



Книга содержит сведения о строении, функциях, онтогенезе, регуляции функций сердца в норме и при функциональных нарушениях. Авторы стремились к синтезу классических представлений о природе сердечной деятельности, механизмах ее миогенной, рефлекторной и гуморальной регуляции, а также результатов современных физиологических, молекулярно-биологических и биохимических исследований.

Особое внимание уделено физиологическому обоснованию наиболее распространенных инструментальных методов исследования электрической активности, биомеханики, насосной и эндокринной функций сердца (электро-, фоно- и эхокардиография, электромагнитная и ультразвуковая флоуметрия), а также вопросам интерпретации данных клинической функциональной диагностики и фундаментальных экспериментальных исследований.


Пособие предназначено для студентов биологических и медицинских вузов, аспирантов, клинических ординаторов, широкого круга биологов, исследователей, преподавателей и практикующих врачей.






Рис. 7. Транспорт ионов кальция в процессах сопряжения возбуждения и сокращения в сердечной мышце


Электромеханическое сопряжение в кардиомиоците начинается с возникновения фазы 0 потенциала действия на плазматической мембране. Когда мембранный потенциал достигает уровня –65 мВ, открываются потенциалзависимые Са2+-каналы L-типа, обеспечивающие формирование входящего ICa2+L тока, который ускоряет деполяризацию кардиомиоцитов. В результате активируются потенциалзависимые кальциевые ионные каналы мембраны T-трубочек (дигидропиридиновый рецептор), через которые ионы кальция поступают внутрь кардиомиоцитов. «Внешние» ионы кальция взаимодействуют (прямо или через посредство кальмодулина) с рианодиновыми рецепторами саркоплазматического ретикулума. Вследствие этого кальциевые ионные каналы саркоплазматического ретикулума открываются, и кальций начинает поступать из мембранных цистерн в цитоплазму кардиомиоцита. В результате концентрация кальция в цитоплазме клетки возрастает с менее чем 10-7 М/л до 10-5 М/л. Резкое повышение концентрации ионов Са2+ в саркоплазме устраняет тропомиозиновую блокаду взаимодействия актина и миозина и запускает процесс сокращения кардиомиоцитов.

Таким образом, поступление «внешних», или триггерных, ионов кальция вызывает высвобождение «внутренних» ионов кальция из саркоплазматического ретикулума. Такой процесс получил название кальций-индуцированного высвобождения кальция. Важно подчеркнуть, что чем более выраженным будет поступление внешних ионов кальция в цитоплазму кардиомиоцита, тем в большей степени будет возрастать количество ионов кальция, выходящих из саркоплазматического ретикулума. Поскольку входящий кальциевый ток ICa2+L достигает максимальной величины во время фазы 2 (плато) потенциала действия рабочего кардиомиоцита, длительность именно этой фазы в норме определяет силу сокращения миокарда. Следовательно, сократимость сердечной мышцы непосредственно зависит от силы входящего кальциевого тока (ICa2+L), которая может возрастать, например, под влиянием катехоламинов, влияющих на степень открытия кальциевых каналов L-типа. Наряду с этим поступление в цитоплазму внешних ионов кальция восполняет запасы кальция в цистернах саркоплазматического ретикулума, что в итоге также влияет на сократимость миокарда.

Существует и другой механизм поступления больших количеств ионов Са2+ в цитоплазму рабочего кардиомиоцита при его возбуждении. Он обеспечивается сопряженным транспортом ионов кальция и натрия через мембрану, то есть Са2+/Na+-обменом. Во время диастолы Са2+/Na+-насос активно удаляет из клетки ионы Са2+ в обмен на ионы Na+. При возбуждении кардиомиоцита направление Са2+/Na+-обмена меняется на противоположное: ионы Са2+ активно переносятся в клетку, тогда как ионы Na+, напротив, удаляются, и в результате концентрация ионов кальция в цитоплазме кардиомиоцита возрастает.

Нарушение процесса электромеханического сопряжения при патологии сердца может привести к тому, что потенциалы действия, продолжая возникать в синусовом узле и распространяться по проводящей системе к рабочему миокарду, не вызывают его сокращения. Отсутствие сократительной функции миокарда приводит к остановке кровообращения. Однако электрическая активность сердца может быть выявлена, например, с помощью регистрации электрокардиограммы. Такое состояние называется электромеханической диссоциацией и может явиться одной из непосредственных причин смерти, например при инфаркте миокарда.

Снижение сократимости миокарда является одной из основных причин развития сердечной недостаточности – состояния, при котором нарушаются гемодинамическая функция сердца и нормальное кровоснабжение органов и тканей. В клинической практике для лечения сердечной недостаточности применяют сердечные гликозиды – вещества, выделенные из таких растений, как наперстянка (дигиталис), строфант, ландыш и др. (Впервые в клиническую практику препараты наперстянки были внедрены английским врачом В. Уитерингом еще в 1785 г.) Как показали физиологические и фармакологические исследования, проведенные в середине 1970–1980-х гг., механизм действия этих препаратов обусловлен их способностью влиять на работу К+/Na+-насоса мембран кардиомиоцитов, а также метаболизм миокарда. В малых терапевтических дозах сердечные гликозиды усиливают работу К+/Na+-насоса, что отчасти увеличивает концентрацию ионов калия в клетках, вызывая увеличение его сократимости.

В средних и высоких терапевтических дозах данные препараты, напротив, угнетают К+/Na+-насос мембраны кардиомиоцитов, что приводит к возрастанию внутриклеточной концентрации Na+ и усилению поступления ионов Са2+ в клетку по механизму Са2+/Na+-обмена (как в покое, так и при возбуждении). В результате увеличивается продолжительность фазы плато потенциала действия рабочего кардиомиоцита, а следовательно, еще больше возрастает сократимость миокарда.

1.7. Особенности сократимости и биомеханики сердечной мышцы

Работа сердца как насоса обеспечивается прежде всего нормальной сократительной функцией миокарда. В исследованиях, проведенных в 1970–1980-х гг. на сосочковой (папиллярной) мышце миокарда млекопитающих, были предприняты попытки, во-первых, создать биофизические модели для описания параметров сократительной активности миокарда, таких как сила и скорость сокращения, а во-вторых, выявить взаимосвязь между указанными параметрами и показателями насосной функции сердца, например ударным объемом желудочков и сердечным выбросом. Эти модели сначала опирались на теорию сокращения скелетной мышцы, предложенную английским физиологом, лауреатом Нобелевской премии А. Хиллом еще в 1922 г. Однако, как оказалось, по ряду фундаментальных характеристик сократимости сердечная мышца отличается от скелетной.

Закон «все или ничего». Поскольку миокард представляет собой функциональный синцитий, то при развитии потенциала действия в одном кардиомиоците процесс возбуждения с высокой скоростью (до 0,5 м/с) распространяется на соседние невозбужденные клетки. Таким образом, происходит быстрый охват возбуждением всех рабочих кардиомиоцитов, что обеспечивает синхронность и практически одновременность их сокращения. Вследствие этого сила сокращения сердца не зависит от силы сверхпорогового раздражителя (закон «все или ничего»). Этот закон был впервые сформулирован американским физиологом X. Боудичем в опытах с электростимуляцией изолированного сердца в конце XIX в.

Невозможность суммации сокращений (тетануса). Как указано выше, продолжительность рефрактерного периода (абсолютного и относительного) рабочего миокарда примерно соответствует времени всего потенциала действия (300 мс). Принципиально важно, что длительность потенциала действия рабочих кардиомиоцитов практически совпадает по времени с продолжительностью их сокращения. Поэтому последующий импульс может вызвать сокращение миокарда только после его расслабления, что соответствует окончанию предыдущего потенциала действия. В результате в миокарде невозможна суммация сокращений при увеличении частоты стимуляции, то есть развитие тетануса, как в скелетной мышце, что могло бы привести к нарушению сокращения и остановке сердца. (Напомним, что продолжительность потенциала действия скелетной мышцы составляет около 5–10 мс, а длительность ее сокращения – 40–50 мс.) В скелетной мышце следующий импульс уже через 10 мс после первого может вызвать новое сокращение, когда мышца еще не расслабилась, что приводит к суммации сокращений. В миокарде этого не происходит в силу значительной продолжительности рефрактерного периода.

Зависимость силы сокращений от величины входящего тока кальция. Выше говорилось, что сокращение миокарда возникает в ответ на поступление «внешних» ионов кальция, которые вызывают высвобождение «внутреннего» кальция из саркоплазматического ретикулума. Поэтому чем более выраженным будет входящий ток ICa2+L, тем большее количество ионов кальция будет выходить в цитоплазму через рианодиновый кальциевый канал-рецептор из саркоплазматического ретикулума, и тем большее количество актомиозиновых мостиков будет образовываться. Таким образом, именно величина входящего тока кальция ICa2+L и определяет силу сокращения рабочих кардиомиоцитов и миокарда в целом. Поскольку входящий кальциевый ток ICa2+L в норме достигает максимальной величины во время фазы 2 потенциала действия рабочего кардиомиоцита, длительность именно этой фазы определяет силу сокращения миокарда. Продолжительность фазы 2 может возрастать под влиянием агонистов β-адренорецепторов, – катехоламинов, выделяющихся из симпатических нервов сердца или циркулирующих в крови. Поэтому возбуждение таких рецепторов сопровождается усилением сократимости миокарда, что играет важную роль в нервной и гуморальной регуляции сердечной деятельности.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Основы физиологии сердца"

Книги похожие на "Основы физиологии сердца" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Лариса Шалковская

Лариса Шалковская - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Лариса Шалковская - Основы физиологии сердца"

Отзывы читателей о книге "Основы физиологии сердца", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.