» » » » Коллектив авторов - Молекулярная морфология. Методы флуоресцентной и конфокальной лазерной микроскопии


Авторские права

Коллектив авторов - Молекулярная морфология. Методы флуоресцентной и конфокальной лазерной микроскопии

Здесь можно купить и скачать " Коллектив авторов - Молекулярная морфология. Методы флуоресцентной и конфокальной лазерной микроскопии" в формате fb2, epub, txt, doc, pdf. Жанр: Медицина, издательство ЛитагентСпецЛитd5a9e1b1-0065-11e5-a17c-0025905a0812. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Молекулярная морфология. Методы флуоресцентной и конфокальной лазерной микроскопии
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Молекулярная морфология. Методы флуоресцентной и конфокальной лазерной микроскопии"

Описание и краткое содержание "Молекулярная морфология. Методы флуоресцентной и конфокальной лазерной микроскопии" читать бесплатно онлайн.



В этой книге в краткой форме изложен материал, необходимый для освоения современных методов конфокальной лазерной микроскопии. Часть из описанных в тексте практических приемов разработана и усовершенствована авторами издания. Отличительной особенностью данной книги является сочетание ключевых моментов из теории современных методов микроскопии с примерами использования различных приемов конфокальной микроскопии и иммуноцитохимии на практике. В приложениях приводятся необходимые сведения о спектральных характеристиках флуорохромов и протоколы иммуноцитохимических реакций, использованных авторами для получения изображений препаратов и построения трехмерных реконструкций микроскопических объектов.

Настоящее руководство может являться справочным пособием для специалистов, применяющих в своей работе флуоресцентные методы и конфокальную микроскопию, а также будет полезно для студентов биологических и медицинских факультетов, изучающих морфологические и нейробиологические дисциплины.






Молекулярная морфология. Методы флуоресцентной и конфокальной лазерной микроскопии

УСЛОВНЫЕ СОКРАЩЕНИЯ

АТ-пара – пара нуклеотидов аденин – тимин

АТФаза – аденозинтрифосфатаза

ГАМК – гамма-аминомасляная кислота

ГДК – глутаматдекарбоксилаза

ГЦ-пара – пара нуклеотидов гуанин – цитозин

дцДНК – двухцепочечная

ДНК ММ – молекулярная масса

НК – нуклеиновые кислоты

оцДНК – одноцепочечная

ДНК ПЦР – полимеразная цепная реакция

РНК – рибонуклеиновая кислота

СФ – синаптофизин

ФСБ – фосфатно-солевой буфер

ФЭУ – фотоэлектронный умножитель

ЦПМ – цитоплазматическая мембрана

ЭПР – эндоплазматический ретикулум

ЭФР – эпидермальный фактор роста

5-TAMRA – 5-carboxytetramethylrhodamine

CCD-матрица (ПЗС-матрица) – charge-coupled device (прибор с зарядовой связью)

DABCO – диазобициклооктан

DAPI – 4,6-диамидино-2-фенилиндол

DMD – digital micromirror device (цифровые микрозеркальные устройства)

EB – этидия бромид

FITC – флуоресцеинизотиоцианат

FLAP – Fluorescence Localization After Photobleaching (локализация флуоресценции после фотоотбеливания)

FLIM – fluorescence lifetime imaging microscopy (микроскопия для исследования времени жизни флуоресценции)

FLIP – Fluorescence Lossin Photobleaching (потеря флуоресценции во время фотоотбеливания)

FRAP – Fluorescence Recovery After Photobleachin (восстановление флуоресценции после фотоотбеливания)

FRET – Fдrster (Fluorescence) Resonance Energy Transfer (Фёрстеровская (флуоресцентная) резонансная передача энергии)

GPDH – глицерофосфатдегидрогеназа

LDH – лактатдегидрогеназа

PBFI – potassium-binding benzofuran isophtalate

PPI – пропидия йодид

PPDA – парафенилендиамин

RITC – родаминизотиоцианат

SBFI – sodium-binding benzofuran isophtalate

SDS – додецилсульфат натрия

SHIM – Second-harmonic imaging microscopy (микроскопия с использованием регистрации второй гармоники)

SNAP25 – Sy Naptosomal-Associated Protein, 25 kD

SNARE – Soluble N-ethylmaleimide-sensitive factor Attachment protein Receptor

TRITC – тетраметилродамин-5(6) – изотиоцианат

ПРЕДИСЛОВИЕ

В последние годы благодаря достижениям квантовой физики, молекулярной биологии и иммуноцитохимии, классические морфологические дисциплины приобрели совершенный инструмент для молекулярного анализа клеточных и тканевых структур. Сейчас можно констатировать, что на основе всестороннего использования новых молекулярных подходов происходит выделение передового направления в морфологии – молекулярной морфологии. Молекулярная морфология, аккумулируя знания, накопленные классической гистологией, эмбриологией, и патологической анатомией, способна занять ключевое место в интеграции клеточной биологии, биохимии, физиологии, молекулярной генетики и протеомики при решении фундаментальных проблем и прикладных задач биомедицинских исследований. Молекулярная морфология, используя постоянно расширяющиеся возможности новых методов конфокальной микроскопии, а также оптической микроскопии сверхвысокого разрешения, в скором времени должна решить насущную задачу создания нового поколения методов трехмерного молекулярного анализа клеточных и тканевых структур, пригодных для использования не только в практике научного исследования, но и в диагностических целях. Ожидаемые новые методы должны быть просты, надежны в использовании, высокоселективны и высокочувствительны. Успешное решение поставленной задачи требует от исследователя глубоких знаний о современных методических приемах иммуноцитохимии, флуоресцентной и конфокальной лазерной микроскопии. Одной из важных задач, стоящих перед морфологом, занимающимся научными исследованиями, является участие в комплексных исследовательских программах, объединяющих специалистов разного профиля с целью решения конкретной научной проблемы. Квалифицированному специалисту-морфологу для успешного выполнения задач комплексных междисциплинарных исследований уже недостаточно владения только основами общей, частной морфологии и патологии, но требуется также и понимание главных биофизических принципов, лежащих в основе феноменов, используемых при создании приборов, предназначенных для флуоресцентной и конфокальной лазерной микроскопии. Без этого невозможно разобраться в сложных настройках современных приборов, от правильного использования которых зависит окончательный результат кропотливой подготовительной работы. Облегчить специалистам-морфологам и научным работникам смежных специальностей знакомство с новыми методами микроскопии и показать, как можно с их помощью решать различные задачи, связанные с изучением структур клеток и тканей, должна помочь настоящая книга.

Технической базой для реализации представленных в приложениях протоколов и иллюстраций, помещенных на вклейках, послужил комплекс оборудования и программного обеспечения, разработанный фирмой Zeiss (Германия), который включает конфокальные лазерные микроскопы LSM 710 и LSM 510 Meta. Иммуноцитохимические протоколы и общие принципы работы с конфокальным микроскопом универсальны и могут успешно использоваться с оборудованием любых производителей.

Настоящее руководство аккумулирует многолетний опыт сотрудников лаборатории функциональной морфологии центральной и периферической нервной системы отдела общей и частной морфологии Института экспериментальной медицины, связанный с использованием методов конфокальной лазерной микроскопии и иммуноцитохимии.

Научные исследования, результаты которых использованы при написании этой книги, были выполнены при поддержке Российского научного фонда (проект № 14-15-00014).

Д. Э. Коржевский

Глава 1.

ФЛУОРЕСЦЕНТНАЯ МИКРОСКОПИЯ И КОНФОКАЛЬНАЯ ЛАЗЕРНАЯ МИКРОСКОПИЯ – ПРИНЦИПЫ И ОСНОВНЫЕ МЕТОДЫ

Большинство биологических объектов обладают низким контрастом внутренних структур, которые в основном прозрачны, поэтому возможности их наблюдения методом классической микроскопии светлого поля ограничены. Эта проблема может быть преодолена несколькими путями: применением метода исследования в темном поле, использованием метода фазового контраста, для двулучепреломляющих материалов применяют поляризационный контраст. Основным же методом контрастирования в биологии является окрашивание препаратов веществами, способными связываться с препаратом и поглощать свет или флуоресцировать. Последние называют флуорохромами.

1.1. Основные понятия

Флуорохромы (флуоресцентные красители)1 – это вещества, которые способны связываться с объектом и расходовать часть энергии поглощенного света на флуоресценцию. Под флуоресценцией понимают способность ряда веществ после поглощения света с одной длиной волны излучать свет с другой длиной волны. Напомним, что электроны в атомах расположены на энергетических уровнях; расстояние между уровнями является характеристикой молекулы. При облучении вещества светом возможен переход электронов на более высокий энергетический уровень. Разница энергии между энергетическими уровнями и частота колебаний поглощенного света связаны между собой уравнением Бора (постулат Бора):



где ΔЕ – разность энергий между уровнями; v – частота; λ – длина волны; h – постоянная Планка; с – скорость света.

После поглощения света часть полученной системой энергии расходуется в виде тепла, а часть может быть излучена в виде фотона. Согласно правилу Стокса, длина волны испускаемого света больше, чем длина волны поглощаемого, или, другими словами, максимум спектра излучения сдвинут по отношению к максимуму спектра поглощения в сторону более длинных волн. С физическими основами описанных выше процессов более подробно можно ознакомиться в учебнике Р. Фейнмана (2011).

Каждый флуорохром характеризуется определенным спектром поглощения и испускания. Например, один из самых распространенных флуоресцентных красителей – FITC (fluorescein-5-isothiocyanate) – имеет максимум поглощения lex = 492 нм, а максимум излучения для него составляет lem = 518 нм. Другой распространенный флуорохром, 5-TAMRA (5-carboxytetramethylrhodamine), имеет lex = 543 нм и lem = 570 нм. На величину стоксова сдвига также влияет полярность среды, в которой находится флуорохром.

Наиболее интенсивной флуоресценции флуорохрома можно добиться, облучая его светом с длиной волны, близкой к максимуму поглощения, однако возможно перевести флуорофор в возбужденное состояние и при облучении его светом с длиной волны, существенно отличающейся от его максимума поглощения. Например, флуорофор можно перевести в возбужденное состояние двумя или тремя длинноволновыми фотонами (мультифотонное возбуждение), что будет эквивалентно возбуждению одним коротковолновым фотоном. Так, возбуждение двумя или тремя фотонами с длиной волны 900 нм эквивалентно возбуждению одним фотоном с длиной волны 450 или 300 нм.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Молекулярная морфология. Методы флуоресцентной и конфокальной лазерной микроскопии"

Книги похожие на "Молекулярная морфология. Методы флуоресцентной и конфокальной лазерной микроскопии" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Коллектив авторов

Коллектив авторов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о " Коллектив авторов - Молекулярная морфология. Методы флуоресцентной и конфокальной лазерной микроскопии"

Отзывы читателей о книге "Молекулярная морфология. Методы флуоресцентной и конфокальной лазерной микроскопии", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.