» » » » Елена Николаева - Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник


Авторские права

Елена Николаева - Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник

Здесь можно купить и скачать "Елена Николаева - Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник" в формате fb2, epub, txt, doc, pdf. Жанр: Детская образовательная литература, издательство Литагент «Когито-Центр»881f530e-013a-102c-99a2-0288a49f2f10, год 2008. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Елена Николаева - Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник
Рейтинг:
Название:
Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник
Издательство:
неизвестно
Год:
2008
ISBN:
978-5-9292-0179-0
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник"

Описание и краткое содержание "Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник" читать бесплатно онлайн.



Содержит основные разделы психофизиологии. Раскрыты биологические основы психики, методы получения психофизиологической информации, психофизиологические механизмы адаптивного поведения. Освещены психофизиология восприятия, движения, бодрствования, сна, внимания, неосознаваемых и осознанных процессов, эмоций, памяти и научения. Представлены психофизиологические подходы к анализу мышления, интеллекта и креативности. В отличие от имеющихся аналогов учебник дополнен темами, характеризующими психофизиологию пола, старения, адаптивного поведения, а также паранатальную психофизиологию. Книга богато иллюстрирована, имеет справочный аппарат, включающий библиографию, предметный и именной указатели.

Для студентов высших учебных заведений, обучающихся по психологическим и биологическим специальностям. Может использоваться в учебном процессе по педагогическим и медицинским направлениям и специальностям. Представляет интерес не только для ученых и специалистов, но и для широкого круга читателей.

3-е издание, переработанное и дополненное.






Постсинаптические рецепторы одного пресинаптического нейрона могут фармакологически различаться и контролировать разные ионные каналы. Одна постсинаптическая клетка может иметь более одного типа рецепторов для данного медиатора, и каждый из этих рецепторов контролирует отличный от других механизм ионной проводимости.

Кроме нейронов, суммирующих и передающих информацию к другим клеткам, описаны так называемые пейсмекерные нейроны, способные самостоятельно генерировать электрические импульсы (Alving, 1968). Активность таких нейронов характеризуется синусоидальными колебаниями частотой 0,1–10 Гц и амплитудой 5–10 мВ. Эти нейроны при отсутствии любого внешнего воздействия обеспечивают периодическую генерацию ПД и передачу возбуждения другим нейронам.

Медиаторы

В начале XX века группа английских физиологов, возглавляемая Дж. Лэнгли, показала, что электрическая стимуляция вегетативных нервов вызывает изменения в органах, иннервируемых этими нервами. Оказалось также, что такие изменения можно вызвать инъекцией в организм экстрактов надпочечников. Дж. Лэнгли предположил, что клетки, иннервируемые вегетативными нервами, имеют две рецептивные субстанции – тормозную и возбуждающую.

На основании этих данных Т. Эллиот в 1905 г. выдвинул предположение, что возбуждающие импульсы в вегетативных нервах вызывают выделение адреналина. В 1921 г. австрийский ученый О. Леви обнаружил, что тормозное влияние блуждающего нерва на деятельность сердца опосредуется специфическим веществом, позднее идентифицированным как ацетилхолин. Г. Дейл привел веские аргументы в пользу того, что ацетилхолин является медиатором в вегетативных ганглиях и нервно-мышечных соединениях. Однако доказать наличие синаптической передачи с помощью медиатора, а не электрического потенциала стало возможным только в 50-х годах, когда исследователи начали использовать микроэлектроды и электронный микроскоп.

Все медиаторные соединения – это низкомолекулярные водорастворимые (дипольные) амины или аминокислоты и родственные им вещества. Ацетилхолин и катехоламины синтезируются из циркулирующих в крови предшественников, тогда как аминокислоты и пептиды в конечном счете образуются из глюкозы. Свидетельством консерватизма живой природы является то, что, несмотря на различие циркуляторных систем и метаболических путей, беспозвоночные и позвоночные животные в равной степени используют большинство общих медиаторов (табл. 1.3).


Таблица 1.3.

Характеристика некоторых медиаторов


Число пептидов, для которых доказаны медиаторные свойства, постоянно растет. Многие из этих веществ содержат от 2 до 10 аминокислот, что соответствует размеру, с одной стороны, мелких аминокислотных медиаторов, с другой – гормонов. Обилие пептидов создает впечатление неоднородности этой группы веществ. В то же время нарастающая информация о их роли в организме позволяет увидеть универсальные принципы их действия. Предполагается, что нейроэндокринные клетки, секретирующие пептиды, первыми появились в эволюции примитивных нервных систем. По-видимому, нейропептиды, производимые ими, достаточно консервативны, поскольку, как уже упоминалось, одинаковые вещества или близкие последовательности аминокислот обнаружены у филогенетически различных ветвей животных – беспозвоночных и позвоночных. Многие из них найдены не только в мозге, но и, например, в кишечнике. Есть предположение, что все пептид эргические клетки связаны общностью эмбрионального происхождения. Пептиды по сравнению с другими медиаторами оказывают свое действие в чрезвычайно низких концентрациях.

С тех пор как в 1921 г. был идентифицирован первый медиатор, число их в арсенале науки постоянно увеличивается и в настоящее время составляет около 50. Многие биологически активные вещества имеют сходную с ними структуру. Они могут усиливать действие медиаторов (такие вещества называются агонистами) или подавлять их активность (антагонисты). Например, лекарственные препараты, снимающие тревогу (седуксен и др.), усиливают действие тормозного нейромедиатора – гамма-аминомасляной кислоты. Антидепрессанты (например, прозак) являются агонистами серотонина. Кокаин усиливает действие дофамина. Он связывается с белком, удаляющим дофамин из места его активности, тем самым увеличивая время его действия. Никотин активирует рецепторы ацетилхолина. Энкефалины и эндорфины являются природными лигандами морфиновых рецепторов: в норме именно они связываются с рецепторами, с которыми в особых условиях – при употреблении наркотика – взаимодействует морфин.

Важным звеном в нервном пути, который служит мишенью всех наркотиков – амфетамина, никотина, алкоголя и опиатов, – является небольшая часть базальных ганглиев, называемая nucleus accumbens (прилежащее ядро). Антипсихотические препараты (нейролептики) предотвращают связывание дофамина с его рецепторами. Содержащие дофамин нейроны, находящиеся в области вентральной покрышки среднего мозга, посылают свои аксоны в префронтальную кору и базальные ганглии, которые участвуют в двигательном контроле. Это обусловливает побочное действие длительно применяющихся нейролептиков, связанное с развитием дискинезий.

В настоящее время описан еще один класс посредников, имеющих чрезвычайно малые размеры молекул. К ним относят оксид азота (NO) и оксид углерода, или угарный газ (CO). Оксид азота опосредует действие ацетилхолина при расширении сосудов, в том числе сердечной мышцы. Именно он является активным компонентом нитроглицерина, используемого для расслабления резко суженных венечных сосудов сердца при стенокардии (грудной жабе). Этот посредник обнаружен в 2 % клеток мозга. Он крайне токсичен, поэтому используется макрофагами (одним из видов клеток иммунной системы) для уничтожения бактерий, проникающих в организм. Второй посредник – угарный газ – не менее токсичен и опасен для человека. В мозге он выполняет важную роль, активируя вторичный (клеточный) посредник – цГМФ.

Белки, служащие рецепторами нейромедиаторов, можно разделить на два класса в зависимости от механизма их действия. К одному классу относятся белки ионных каналов, меняющие свою форму и открывающие каналы, по которым проходят ионы. Рецепторы другого класса располагаются по соседству с мембранными G-белками, разрывающими богатую энергией фосфатную связь в молекуле гуанозинтрифосфата, что инициирует каскад биохимических процессов, ведущих к специфической клеточной реакции через вторичные (клеточные) посредники. Эффекты, производимые этими белками, характеризуются медленным началом действия и большей продолжительностью, по сравнению с реакциями, связанными с открытием ионных каналов.

Функции нейрона

В настоящее время можно говорить о наличии трех основных функций нейрона. Наиболее распространенной является суммация возбуждающих и тормозных синаптических потенциалов и передача возбуждения следующему нейрону.

Описаны нейроны (прежде всего нейроны гипоталамуса), обладающие секреторной функцией. Они синтезируют биологически активные вещества – статины и либерины – и выделяют их в кровеносные сосуды воротной системы гипоталамуса. С током крови эти вещества попадают в переднюю долю гипофиза и способствуют реализации или накоплению его гормонов.

Наконец, существуют нейроны, обладающие спонтанной ауторитмической активностью. Их называют пейсмекерами, или водителями ритма. Эндогенные процессы подобных нейронов приводят к периодическому изменению ионной проницаемости мембраны и генерированию ПД. Взаимодействуя с другими клетками, они синхронизируют активность этих клеток.

Типы нервных волокон

По скорости проведения импульса и строению нервные волокна разделяют на три группы – A, B и C. Волокна типа А делятся на 4 подгруппы: альфа-, бета-, гамма-, дельта-. Альфа-волокна имеют самый большой диаметр (12–22 мк) и обладают наибольшей скоростью проведения возбуждения (70–120 м/сек). Такие волокна проводят информацию к скелетным мышцам и от них в мозг, что позволяет человеку достаточно быстро приспосабливать положение своего тела к ситуации. Остальные нервные волокна имеют меньший диаметр (2–12 мк) и соответственно меньшую скорость проведения импульса. Они несут информацию от сенсорных органов. Гамма-волокна передают возбуждение от моторных нейронов спинного мозга к интрафузальным мышечным волокнам.


Таблица 1.4.

Свойства различных нервных волокон теплокровных (Бабский, 1972).


К волокнам типа В относятся миелинизированные волокна, преимущественно преганглионарные, распространенные в автономной нервной системе. Скорость проведения информации по ним составляет 3–14 м/сек.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник"

Книги похожие на "Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Елена Николаева

Елена Николаева - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Елена Николаева - Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник"

Отзывы читателей о книге "Психофизиология. Психологическая физиология с основами физиологической психологии. Учебник", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.