» » » С. Егоров - Коллоидная химия. Шпаргалка


Авторские права

С. Егоров - Коллоидная химия. Шпаргалка

Здесь можно купить и скачать "С. Егоров - Коллоидная химия. Шпаргалка" в формате fb2, epub, txt, doc, pdf. Жанр: Химия, издательство Литагент «Научная книга»5078daf4-9e1a-102b-b665-7cd09fa97345. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Коллоидная химия. Шпаргалка
Автор:
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Коллоидная химия. Шпаргалка"

Описание и краткое содержание "Коллоидная химия. Шпаргалка" читать бесплатно онлайн.



Данное издание создано в помощь студентам вузов, которые хотят быстро подготовиться к экзаменам и сдать сессию без проблем. Пособие составлено с учетом Государственного образовательного стандарта.






С. В. Егоров, Е. С. Оробейко, Е. С. Мухачева

Коллоидальная химия, шпаргалка

1. Возникновение и основные этапы развития коллоидной химии. Предмет и объекты исследований коллоидной химии

Возникновение науки коллоидной химии связано с исследованиями английского химика Т. Грэма. После пионерских исследований М. Фарадея (1857 г.), когда впервые были получены устойчивые коллоидные растворы высокодисперсного золота, в 1861 г. Грэм изучал диффузию разных веществ в водных растворах и обнаружил, что некоторые из них (желатин, агар-агар и т. п.) диффундируют в воде намного медленнее, чем, например, соли и кислоты. Также эти вещества при пересыщении растворов не кристаллизовались, а формировали студнеобразную, клейкую массу. Эти вещества Т. Грэм назвал коллоидами (от греч. kolla – «клей», eidos – «вид»). Так появилось название науки – «коллоидная химия». Т. Грэм выдвинул гипотезу о существовании в природе двух противоположных классов химических веществ – кристаллоидов и коллоидов. Эта идея заинтересовала многих ученых, и во второй половине XIX в. началось бурное развитие коллоидной химии. В России в это время коллоидной химии также уделялось большое внимание, во многом под влиянием Д. И. Менделеева. Исследования температурной зависимости поверхностного натяжения органических жидкостей (1861 г.) привели Менделеева к открытию понятия критической температуры веществ. Менделеев высказал также идею о связи между поверхностным натяжением и другими свойствами вещества. В эти годы были открыты многие вещества с коллоидными свойствами, разработаны различные методы очистки и стабилизации коллоидов, созданы методы их исследования. По мере открытия новых коллоидов на смену гипотезе Т. Грэма в первой половине XX в. пришла концепция универсальности коллоидного (дисперсного) состояния вещества: «Коллоидное состояние не является обусловленным особенностями состава вещества. При определенных условиях каждое вещество может находиться в коллоидном состоянии». Эту концепцию сформулировал профессор Санкт-Петербургского горного института П. П. Веймарн в 1906–1910 гг. Он показал, что типичные коллоиды (например, желатин) можно выделить в кристаллическом виде и, напротив, из кристаллоидных веществ можно приготовить коллоидный раствор (например, поваренной соли в бензоле). Произошло смещение приоритетов коллоидной химии. Главным направлением стало изучение дисперсного (коллоидного) состояния веществ. Примерно к 1920-м гг. фундаментальные проблемы коллоидной химии условно разделили на три группы: состав, строение и свойства коллоидных частиц; взаимодействие частиц с дисперсной средой; контактные взаимодействия частиц друг с другом, приводящие к образованию коллоидных структур. В этот период были открыты основные законы коллоидной химии – закон броуновского движения и диффузии коллоидных частиц (А. Эйнштейн), гетерогенной природы коллоидных растворов (Р. Зигмонди), седиментационно-диффузионного равновесия дисперсий в поле силы тяжести (Ж. Перрен) и в центрифуге (Т. Сведберг), светорассеяния (Дж. Рэлей), коагуляции золей электролитами (Г. Шульце и В. Гарди). Появление во второй половине XX в. высокоразрешающих методов изучения строения веществ (ЯМР, электронной и атомно силовой микроскопии, компьютерного моделирования, фотон-корреляционной спектроскопии и др.) позволило перейти к систематическому исследованию строения и свойств коллоидных систем. Современное определение данной науки гласит: коллоидная химия – это учение о свойствах и превращениях веществ в дисперсном и ультрадисперсном состояниях и поверхностных явлениях в дисперсных системах. Объекты исследования коллоидной химии имеют высокоразвитую поверхность и представляют собой различные золи, суспензии, эмульсии, пены, поверхностные пленки, мембраны и пористые тела, наноструктурированные системы (нанотрубки, пленки Ленгмюра-Блоджетт, гибридные органо-неорганические композиционные материалы, нанокомпозиты).

2. Основные особенности дисперсных систем. Особенности ультрамикрогетерогенного состояния (наносостояния)

Дисперсные системы образованы из двух или более фаз с сильно развитой поверхностью раздела между ними, причем хотя бы одна из фаз – дисперсная фаза – распределена в виде мелких частиц (кристалликов, капель, пузырьков и т. п.) в другой, сплошной фазе – дисперсионной среде. Примерами являются горные породы, грунты, почвы, дымы, облака, атмосферные осадки, растительные и животные ткани и др. Важнейшей особенностью дисперсных систем является гетерогенность. Характерная особенность дисперсных систем – сильно развитая межфазная поверхность и, как следствие, высокая свободная энергия, поэтому обычно дисперсные системы (кроме лиофильных) термодинамически неустойчивы. Они обладают повышенной адсорбционной способностью, химической, а иногда и биологической активностью. Для дисперсных систем характерно увеличение поверхности с ростом дисперсности и возрастание роли поверхностных явлений. Дисперсные системы характеризуются очень большой удельной поверхностью W дисперсной фазы.

W < K / d r,

где K – безразмерный коэффициент (для сферических и кубических частиц K = 6); r – плотность дисперсной фазы.

Другие важнейшие термодинамические параметры, характеризующие коллоидные системы, это удельная свободная поверхностная энергия σ (поверхностное натяжение), поверхностная энтропия h и удельная адсорбция Г. Важная особенность дисперсных систем заключается в том, что значительная доля всей массы и свободной энергии системы сосредоточены в межфазных поверхностных слоях. С этой особенностью связаны свойства – невоспроизводимость (или индивидуальность) системы в связи с неодинаковой поверхностью частиц дисперсной фазы, обладающих разной поверхностной энергией даже при одинаковой удельной поверхности; структурообразование, связанное с тенденцией к термодинамической неустойчивости. Фундаментальным свойством дисперсных систем является их способность к постепенной эволюции, которая связана с природой дисперсного состояния вещества, в первую очередь с термодинамической неравновесностью. Избыток свободной энергии, обусловленной наличием высокоразвитой поверхности раздела между дисперсной фазой и дисперсионной средой, стимулирует протекание различных процессов (физических, физико-химических), приводящих к уменьшению свободной энергии Гельмгольца F. Такой признак, как лабильность, является следствием термодинамической неустойчивости и склонности к уменьшению свободной энергии путем образования менее дисперсных структур. Основная характеристика дисперсных систем – размеры частиц (или дисперсность), что определяется отношением общей площади межфазной поверхности к объему дисперсной фазы. По этому признаку выделяют грубодисперсные (низкодисперсные) (частицы имеют размер от 10–4 см и выше) и тонкодисперсные (высокодисперсные) (частицы имеют размер от 10–4 до 10–5–10–7 см), или коллоидные системы (коллоиды). Предельная степень дисперсности, при которой коллоидная система сохраняет главное свойство – гетерогенность, лежит в интервале от 1 до 100 нм. Ультрадисперсные частицы занимают промежуточное положение между молекулами (атомами, ионами) и макроскопическими телами (фазами). Размер дисперсной фазы частицы d близок к предельно возможному, тем сильнее будут сказываться масштабные эффекты – зависимость свойств от размера частиц. Если у систем со средней степенью дисперсности поверхностное натяжение s определяется только химическим составом, то для наносистем уже необходимо учитывать зависимость поверхностного натяжения от размеров дисперсных частиц.

3. Различные типы классификации дисперсных систем. Лиофильные и лиофобные дисперсные системы

Дисперсные системы гетерогенны и состоят из двух фаз, одна из которых (дисперсная фаза) в виде частиц различной величины распределена в другой фазе – сплошной дисперсионной среде. Дисперсные системы классифицируют прежде всего по размеру частиц дисперсной фазы (или по степени дисперсности). Кроме того, их разделяют на группы, различающиеся по природе и агрегатному состоянию дисперсной фазы и дисперсионной среды (могут быть твердыми, жидкими и газообразными), по структуре и по характеру межфазных взаимодействий. Если дисперсионной средой является жидкость, а дисперсной фазой – твердые частицы, система называется взвесью, или суспензией; если дисперсная фаза представляет собой капельки жидкости, то систему называют эмульсией. Среди дисперсных систем выделяют также пены (газ диспергирован в жидкости), аэрозоли (жидкость – в газе) и пористые тела (твердая фаза, в которой диспергированы газ либо жидкость). Сокращенно тип дисперсной системы в зависимости от агрегатного состояния записывают в виде дроби, где дисперсная фаза находится в числителе, а дисперсионная среда – в знаменателе (например, Т/Т (твердые коллоидные растворы – минералы, сплавы), Т/Ж (золи – суспензии), Т/Г (аэрозоли – пыли, дымы); Ж/Т (пористые тела – гели), Ж/Ж (эмульсии), Ж/Г (аэрозоли – туманы); Г/Т (пористые и капиллярные системы), Г/Ж (пены – газовые эмульсии)). Системы Г/Г обычно не фигурируют в классификации, т. к. необходимое условие образования дисперсной системы – ограниченная растворимость вещества в среде.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Коллоидная химия. Шпаргалка"

Книги похожие на "Коллоидная химия. Шпаргалка" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора С. Егоров

С. Егоров - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "С. Егоров - Коллоидная химия. Шпаргалка"

Отзывы читателей о книге "Коллоидная химия. Шпаргалка", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.