» » » » Владимир Левшин - Путешествие по Карликании и Аль-Джебре


Авторские права

Владимир Левшин - Путешествие по Карликании и Аль-Джебре

Здесь можно скачать бесплатно "Владимир Левшин - Путешествие по Карликании и Аль-Джебре" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Детская литература, год 1991. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Владимир Левшин - Путешествие по Карликании и Аль-Джебре
Рейтинг:
Название:
Путешествие по Карликании и Аль-Джебре
Издательство:
Детская литература
Год:
1991
ISBN:
5-08-001458-х
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Путешествие по Карликании и Аль-Джебре"

Описание и краткое содержание "Путешествие по Карликании и Аль-Джебре" читать бесплатно онлайн.



«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.

Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.

Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».






1·i=i.

— Вот так история! Мнимую Единицу нельзя возвести более чем в четвёртую степень? — удивился Олег.

— Отчего же! — возразила Мнимая Единичка. — Возводите себе на здоровье и в шестую, и в седьмую, и в сто двадцать первую… Словом, в любую целую степень. Но ничего, кроме того, что уже было, не получится. На то и карусель!

Тут Севе срочно понадобилось выяснить, чему равняется i17.

— Ну, это совсем нетрудно, i в пятой равно i, — сказала Мнимая Единичка. — Значит, i в девятой тоже равно i…

— Понимаю! — перебил Сева. — Каждый раз надо прибавлять к показателю степени четыре: i13 равно i, значит, i17 тоже равно i.

Вот, Нулик, хорошая задача для твоих учеников. Попробуйте вычислить, чему равно i24. А чтобы вам легче было, загляните в чертёж мнимой карусели.

Долго ещё любовались мы превращениями Мнимых Единиц, а когда уже собрались уходить, Сева хлопнул себя по лбу:

— Чуть не забыл спросить! Вы сказали, что при возведении в степень Мнимые Единицы движутся по кривой. А ведь здесь они движутся по окружности!

— Окружность тоже кривая, но такая, где все точки находятся на одинаковом расстоянии от центра. При умножении и возведении в степень перемещаются по окружности только Мнимые Единицы.

— А как движутся другие мнимые числа при возведении в степень? — спросил Олег. — Два i три i, четыре i?

— На нашей карусели вы этого не увидите, — сказала Мнимая Единичка. — Да оно и к лучшему. Нельзя же всё сразу…

— Всякому овощу своё время? — подмигнул Сева.

— Пожалуй, — улыбнулась Мнимая Единичка.

Мы поблагодарили её и распрощались. Но тут пришла очередь Олегу лопать себя по лбу.

— Извините, пожалуйста, — сказал он, обернувшись, — а зачем вообще нужны мнимые числа?

— Это вы поймёте, когда начнёте решать уравнения второй и третьей степени. Там в ответе часто получаются мнимые числа.

— На что нужны уравнения с мнимыми ответами? — буркнул Сева.

— Спросите об этом у физиков, химиков, инженеров, астрономов… Мнимые числа помогают им решать вовсе не мнимые, а действительно важные практические задачи.

— Но почему же тогда вас называют мнимыми?

— По привычке, — грустно ответила буковка i. — Так нас окрестил французский учёный Рене Декарт. Это было в семнадцатом веке, когда мнимые числа ни во что не ставились. Но с тех пор многое переменилось. Если бы Декарт жил в наши дни, он непременно придумал бы для нас более подходящее название.

— Например, необходимые числа, — сказал Олег.

— О! Это было бы чудесно! — вздохнула Мнимая Единичка.

Мы ещё раз попрощались и ушли. На этот раз совсем.

Таня.

Аль-мукабала!

(Сева — Нулику)

Селям алейкум, старина! Я теперь тоже умею говорить по-восточному. Поживёшь в Аль-Джебре — не то ещё узнаешь!

Сегодня мы учились решать уравнения. Правда, пока ещё первой степени. Но и это не так уж мало.

Здесь есть особая площадка, где решают эти уравнения. И не как-нибудь вручную, а подъёмными кранами. Механизация!

Когда подходишь к этой площадке, видишь одни только краны. Длинношеие, вроде жирафов. «Жирафы» то поднимают голову, то опускают, то тянутся друг другу навстречу. Только переносят они не кирпичи, не блоки, а буквы, числа, знаки сложения, вычитания. Словом, всё, что понадобится.

Таня оставила в покое свой фасонистый комбинезон, пришла в школьном платье. И очки сняла. Правильно сделала: электросваркой ей здесь заниматься не пришлось.

Что нам бросилось в глаза — это иксы. Их здесь видимо-невидимо. Ведь там, где решают уравнения, без иксов не обойтись.

Эф не отпускала нас ни на шаг. Наверное, боялась, как бы кого не ушибло краном, хотя везде и так развешаны плакаты:

ПОД КРАНОМ НЕ СТОЯТЬ! ВО ВРЕМЯ АЛЬ-ДЖЕБРЫ И АЛЬ-МУКАБАЛЫ к уравнениям не подходить!

Высоко-высоко, в кабинке крана, сидела молоденькая крановщица — буква Ка. Она передвигала рычаги и зорко следила за регулировщицей Эр. Та стояла внизу. В каждой руке — по флажку. Ими она указывала крановщице, куда двигать кран.

Под краном чинно стояли Икс в чёрной маске, Двойка и Шестёрка. Они образовали такое уравнение: x-2=6.

Регулировщица медленно опустила один флажок, и так же медленно наклонил свою жирафью шею кран с большим крюком на конце. Крюк осторожно подцепил Двойку, которая торопливо прихватила свой минус. Регулировщица помахала флажком, и кран замер. Потом она крикнула: «Аль-джебр!» — прямо как у нас кричат «майна» или «вира». И вот уже Двойка с минусом заболтала ножками и поплыла к правой части уравнения.

Когда она поравнялась со знаком равенства, регулировщица скомандовала:

«Переменить знак!» Двойка быстро положила минус в карман и вынула оттуда знак плюс. И вот уже она рядом с Шестёркой в правой части равенства: x = 6 + 2.

А через секунду вместо этого мы увидели:

x − 8.

Чёрная маска упала, Икс поднял её, низко поклонился Ка и Эр и скрылся. А мы перешли к другому крану. Там уже стояло такое уравнение:

Зx + 6 = 12.

Снова крановщица нажимала на рычаги, снова регулировщица махала флажками, кричала: «Аль-джебр!» — и скоро под краном появилось вот что:

Зx =12 − 6.

Мы переглянулись.

— В чём дело? — спросила Эф. — Что-нибудь непонятно?

— Непонятно, — признался Олег. — До сих пор нам показывали только такие задачи, где отрицательное число переносится из левой части равенства в правую и превращается в положительное. Действие это называется «аль-джебр», по-нашему — восстановление. На этот раз в левой части равенства было положительное число шесть, и его перенесли в правую часть со знаком минус. При чём же здесь восстановление?

— Законный вопрос, — развела руками Эф. — Но вспомните, что «аль-джебр» — слово, пришедшее к нам из далёкой древности. А древние слова по дороге часто теряют своё первоначальное значение. Взять хоть слово «чернила». Поначалу чернила были только чёрные. Сейчас есть и красные, и зелёные, и синие, и фиолетовые. Но никто же не называет их ни краснилами, ни синилами!

— Как интересно! — сказала Таня. — Таких слов, наверное, много.

— Перочинный ножик! — вспомнил я. — Раньше им перья чинили, а теперь карандаши.

— Правильно! — сказала Эф. — То же самое случилось и со словом «аль-джебр». Мухаммед ибн Муса применил его тогда, когда отрицательные числа были бесправными. Перенося их в правую часть равенства с положительным знаком, он восстанавливал их в правах. Но отношение к отрицательным числам давно уже переменилось. И теперь понятие «аль-джебр» расширилось. Оно означает не только перенос отрицательного числа из одной части равенства в другую с положительным знаком, но и вообще перенос любого числа с обратным знаком. Но вернёмся всё-таки к нашему уравнению, — закончила свою речь Эф.

Мы посмотрели на площадку. Там теперь вместо 3x=12-6 стояло:

Зx = 6.

Странное дело: уравнение решено, а на Иксе по-прежнему чёрная маска.

— Ошибаетесь, — сказала Эф. — Решить уравнение — значит вычислить, чему равен один икс. Мы же пока знаем, чему равны три икса.

— Ну, это нетрудно, — сказал Олег. — Чтобы вычислить икс, надо шесть разделить на три.

И словно в ответ на его слова, кран приподнял число Шесть над землёй и плавно опустил на двухэтажную тележку. Потом крюк подцепил коэффициент при Иксе — Тройку, перенёс её в правую часть равенства и поставил под числом Шесть:

Тележку быстро откатили, и на месте дроби появилась Двойка:

x = 2.

— Э-э, нет, — запротестовал я, — так не годится. Ведь числа переносятся в правую часть равенства с обратным знаком. Почему же это Тройку перенесли с тем же?

— Да потому, что в этом уравнении Тройка не слагаемое, а коэффициент при Иксе. А коэффициент — это множитель, не так ли? Коли три в левой части множитель, так в правой оно превращается в делитель. Стало быть, правило сохранилось, потому что деление и умножение такие же обратные действия, как сложение и вычитание.

Не удаётся мне их подловить на ошибке. Пришлось прикусить язык и вместе со всеми перейти к следующему уравнению. Его решал уже не один, а два крана. В каждом сидела крановщица. А регулировщица, как и прежде, была всего одна. Наверное, многостаночница.

Уравнение было такое:

6х − 7 = 2x + 8 −x.

На этот раз регулировщица дала команду подлиннее: «Аль-джебр! Аль-мукабала!» И сейчас же один кран подцепил все иксы справа вместе с коэффициентами и перенёс с обратными знаками в левую часть уравнения. В то же время второй кран подхватил Семёрку с минусом и перенёс в правую часть. Семёрка тоже переменила знак минус на плюс:


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Путешествие по Карликании и Аль-Джебре"

Книги похожие на "Путешествие по Карликании и Аль-Джебре" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Владимир Левшин

Владимир Левшин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Владимир Левшин - Путешествие по Карликании и Аль-Джебре"

Отзывы читателей о книге "Путешествие по Карликании и Аль-Джебре", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.