» » » » Владимир Левшин - Путешествие по Карликании и Аль-Джебре


Авторские права

Владимир Левшин - Путешествие по Карликании и Аль-Джебре

Здесь можно скачать бесплатно "Владимир Левшин - Путешествие по Карликании и Аль-Джебре" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Детская литература, год 1991. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Владимир Левшин - Путешествие по Карликании и Аль-Джебре
Рейтинг:
Название:
Путешествие по Карликании и Аль-Джебре
Издательство:
Детская литература
Год:
1991
ISBN:
5-08-001458-х
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Путешествие по Карликании и Аль-Джебре"

Описание и краткое содержание "Путешествие по Карликании и Аль-Джебре" читать бесплатно онлайн.



«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.

Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.

Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».






По обе стороны проспекта тянулись длинные здания со множеством вертящихся дверей. Карликане то и дело ныряли в них и тотчас же возвращались с небольшими чемоданчиками, в которых что-то мелодично позвякивало.

На каждом шагу попадались вывески с крупной надписью:

СКЛАД ДЕЙСТВУЮЩИХ ЗНАКОВ

Под этой надписью была другая, поменьше:

ЭКОНОМЬТЕ РАСХОД КРЕСТИКОВ!

— Что это за крестики такие? — вслух недоумевал Сева. — И почему это их надо экономить?

Но вот из одной вертящейся двери выпорхнула школьница с тремя смешными косичками. Это была маленькая Тройка.

— Троечка, что это у вас в чемодане? — спросил у неё Сева.

— Здравствуйте! — ответила воспитанная Тройка.

— Ах да, я совершенно забыл, — спохватился Сева. — Конечно, здравствуйте! Не скажете ли вы, что это звенит у вас в чемодане?

— Действующие знаки. — Тройка указала на вывеску: — Тут же всё написано. Разве вы не умеете читать?

— Умею, но не понимаю, что это за знаки и как они действуют?

— Ах нет, нет. Они не могут сами действовать. Они только помогают другим производить различные действия.

— Театральные действия? — сострил Сева.

— Скажете тоже! — Тройка энергично замотала косичками. — Не театральные, а арифметические!

— Понимаю: сложение, вычитание, умножение и деление.

— И многие другие.

— Какие же другие? — удивилась Таня. — Кроме этих четырёх, других действий не бывает.

— Что вы! — воскликнула Тройка. — Кроме арифметических, могут быть и совсем другие действия — например, алгебраические.

— Не знаю таких, — пожала плечами Таня. — Никогда даже не слышала.

— Неужели?! — Тройка изумлённо всплеснула руками.

Трах! Это упал на землю чемоданчик, и всё его содержимое высыпалось наружу. Мы поспешно бросились подбирать.

Чего там только не было! И точки, и запятые, чёрточки маленькие, чёрточки большие, крестики, скобки круглые, скобки квадратные, скобки фигурные и ещё много-много совсем непонятных знаков.

— Ой, какая я неловкая! — огорчилась Тройка. — Пожалуйста, осторожнее. Это очень важные знаки. Вот эта маленькая чёрточка, например. Если забыть поставить её между двумя числами, то никто и не догадается, что из одного числа нужно вычесть другое.

— Это минус! — выпалил Сева.

— Разумеется! — обрадовалась Тройка. — А вот если я две такие чёрточки помещу одну над другой, это уже будет не два минуса, а…

— …знак равенства, — не удержался Сева.

— Так вы же всё знаете! Я думаю, дальше вам и объяснять не нужно. Вот, например, этот крестик…

— Это плюс, — сказал Сева. — Он нужен для сложения. А вот почему у вас висит объявление «Экономьте расход крестиков!»? Неужели для того, чтобы поменьше складывали?

— Ой, что вы! — засмеялась Тройка. — Складывайте на здоровье, сколько душе угодно! Дело в том, что крестик употребляется не только как знак сложения, но и как знак умножения. Стоит только поставить его на обе ножки — вот так: × — Поэтому крестиков у нас не хватает, и мы решили заменить их точками.

— Но такую точку легко спутать со знаком препинания!

— Нет, нет! — Тройка замахала руками. — Это же очень просто: наша точка ставится чуточку выше, чем знак препинания.

— А это что такое? — спросил Сева, вытащив из чемоданчика забавную фигурку. — Сачок для ловли бабочек?

— Какой вы смешной! — прыснула Тройка. — Это тоже знак. Он применяется при извлечении корней из чисел. И зовут его радикал.

— Выходит, у чисел есть корни, такие же, как у деревьев? — обрадовался Сева.

— Какой ужас! — воскликнула Тройка. — Вы всё понимаете буквально.

— Но что же это всё-таки за корни?

— Позвольте мне на ваш вопрос ответить вопросом: сколько будет трижды три?

— Разумеется, девять!

— Великолепно! Сами того не замечая, вы произвели важное и прекрасное действие: возвели тройку в степень!

— Нет, — возразил Сева, — я просто умножил тройку саму на себя.

— Вот именно. Но это же и есть возведение в степень. И притом — во вторую степень.

— А разве можно ещё и в третью? — спросила Таня.

— Конечно. Для этого надо девять ещё раз умножить на три.

— Значит, три, помноженное на три и ещё раз на три, — это и есть третья степень трёх? — сказала Таня.

— Совершенно верно. Поэтому третья степень трёх равна…

— …двадцати семи, — закончила Таня.

— Но ведь так можно поступать без конца! — сказал Сева.

— Как вы это правильно заметили! — восхитилась Тройка. — Именно без конца! И тогда будут получаться четвёртая, пятая, шестая степени…

— Любопытно.

— Но вернёмся к началу нашего вопроса, — продолжала Тройка. — Вы спросили, что такое радикал? Начнём от печки. Трижды три — девять. А теперь я задам вам тот же вопрос с конца: какое число нужно возвести во вторую степень, чтобы получить девять?

— Три, — сразу ответил Сева.

— Видите, по девятке мы узнали, какое число было возведено во вторую степень. И число это оказалось тройкой.

— Вот это действие и называется извлечением корня? — спросила Таня.

— Ну да! — обрадовалась Тройка. — И обозначается оно радикалом.

— А ты думал, им ловят бабочек, — съехидничала Таня.

Сева торжественно поднял руку:

— Клянусь, теперь я всегда буду помнить, чему равен корень из девяти.

— И всё-таки, — продолжала Тройка, — не следует думать, что корень из девяти всегда равен трём! Всё зависит от того, какой корень вы извлекаете.

— Как, — опешил Сева, — разве корни бывают разные?

— Совершенно разные! Есть корни и третьей, и четвёртой степени. Об этом вы узнаете в своё время. А теперь простите меня. Я боюсь опоздать на площадь Добрых Напутствий.

Тройка схватила чемоданчик и убежала.

И тут только мы заметили, что Четвёрка с бантиком куда-то исчезла. Посоветовавшись, мы решили продолжать путь одни. Это было нетрудно: все жители города двигались сейчас в одном направлении.

Площадь добрых напутствий

Это было огромное поле, сплошь заполненное жителями Арабеллы. И, так же как и на проспекте Действующих Знаков, здесь царил совершеннейший порядок.

У входа на площадь возвышалось какое-то удивительное сооружение. Мои ребята с восторгом осматривали его, поднимались на ступеньки, заглядывали внутрь через круглые разноцветные окошечки.

— Это ракетная установка?

— Нет, это космический корабль!

— А по-моему, атомная станция!

Я молчал: пусть разбираются сами.

Неожиданно в разговор вмешалась толстая Восьмёрка, которая вела за руку маленького Нулика.

— Здравствуйте! — обратилась она к нам.

— Здравствуйте! — повторил за ней Нулик и вкусно зевнул.

Восьмёрка покачала головой:

— Ну что с ним делать? Заснул только под утро, а теперь зевает. Как я отпущу его в такое серьёзное путешествие?

— Не вы ему пели: «Спи, мой Нулик, спи, сынок»? — спросила Таня.

— Кто же, кроме меня, может петь песенку, которую я сама сочинила? А не вы ли гуляли ночью под моими окнами? — в свою очередь поинтересовалась Восьмёрка.

— Да, да, это они гуляли! — обрадовался Нулик. — Вот эта девочка, — он показал на Таню, — спросила, как почтальоны доставляют нам письма, если все дома под одним номером.

— Не всё ли равно, кто получит письмо, — возразила Восьмёрка.

Письма, адресованные кому-нибудь из нас, одинаково касаются всех.

— И меня, и меня касаются! — закричал Нулик.

— Какой умный ребёнок! — умилилась Восьмёрка.

— Раз уж вы так любезны, — обратился к ней Сева, — не скажете ли, уважаемая Восьмёрка, откуда у вас сын Нулик? Я думал, ваши дети тоже Восьмёрки.

— Конечно, у меня, как и у всех других мам-восьмёрок, дети тоже восьмёрки. А у пятёрок — пятёрки, у двоек — двойки, и так далее. А вот нулики имеются у всех. Нулики — это наши приёмные дети. Но мы их любим, как своих родных, даже, пожалуй, больше. Ведь они такие маленькие, такие беззащитные. Они без нас совсем ничего не значат.

— Откуда же они у вас появились? — спросил удивлённо Сева.

— О, это очень длинная история! Вы, наверное, знаете, что на нашей родине, в Индии, было только девять цифр. Эти девять старейших и образовали Арифметическое государство. Теперь они заседают в Совете Старейших и управляют нами. Вскоре люди решили, что очень неудобно обходиться без нулей. Ну подумайте сами: вам нужно записать число 205, а у вас только девять цифр, нуля нет. Что вы будете делать? На месте сотен поставите двойку, на месте единиц — пятёрку. А что вы поставите на месте десятков? Ведь десятков в этом числе нет! Нельзя же писать число 205 так: 2НЕТ5! Это было бы ужасно!


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Путешествие по Карликании и Аль-Джебре"

Книги похожие на "Путешествие по Карликании и Аль-Джебре" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Владимир Левшин

Владимир Левшин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Владимир Левшин - Путешествие по Карликании и Аль-Джебре"

Отзывы читателей о книге "Путешествие по Карликании и Аль-Джебре", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.