» » » Александр Филиппов - Многоликий солитон


Авторские права

Александр Филиппов - Многоликий солитон

Здесь можно скачать бесплатно "Александр Филиппов - Многоликий солитон" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство Наука, гл. ред. физ.-мат. лит., год 1990. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Александр Филиппов - Многоликий солитон
Рейтинг:
Название:
Многоликий солитон
Издательство:
Наука, гл. ред. физ.-мат. лит.
Жанр:
Год:
1990
ISBN:
5-02-014405-3
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Многоликий солитон"

Описание и краткое содержание "Многоликий солитон" читать бесплатно онлайн.



Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.

В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.

Для школьников старших классов, студентов, преподавателей.






Итак, независимость мод связана с линейностью сил, связывающих грузики. Если нарушить линейность (скажем, пружины не подчиняются закону Гука), то можно ожидать, что движения грузиков станут хаотичными, по крайней мере в том случае, когда число грузиков N достаточно велико. Примерно так думало большинство физиков, в том числе и Энрико Ферми. Впрочем, возможно, что у Ферми были кое-какие сомнения на этот счет. Вероятно, его интересовало также, сколь большим должно быть число N. Достаточно ли велико N = 100 или же надо взять N = 1 000 000? *) К сожалению, Ферми не успел получить ответа на этот вопрос. Так или иначе, но первый серьезный вопрос, который он решил задать ЭВМ, был вопрос об установлении теплового равновесия в цепочке грузиков и нелинейных пружин. Результат машинного эксперимента оказался совершенно неожиданным.

*) В конце 50-x годов были выполнены компьютерные расчеты поведения 100 твердых шаров в кубическом ящике, размер которого примерно в 100 раз больше диаметра шаров. Оказалось, что столкновения между шарами довольно быстро приводят к хаотическому (максвелловскому) распределению их скоростей. Для хаотизации оказалось достаточно 150—200 столкновений.

ЭВМ удивляет Энрико Ферми

Энрико Ферми был одним из величайших физиков нашего века — теоретиком и экспериментатором. Его имя навсегда связано с открытием и освоением ядерной энергии, исследованием элементарных частиц и со многими другими областями физики. Менее известно, что он многие годы серьезно интересовался различными нелинейными явлениями, а незадолго до смерти заинтересовался турбулентностью и выполнил несколько работ по гидродинамике. Одна из них сделана совместно с фон Нейманом, и, возможно, что не без влияния фон Неймана Ферми начал думать об освоении неизвестных земель «нелинейной физики» с помощью экспериментов на ЭВМ.

Прежде чем рассказывать об этих экспериментах, надо все же сказать хоть несколько слов о Ферми и фон Неймане, этих двух великих ученых, заложивших основы для многих крупнейших достижений науки и техники ХХ в. В их судьбах можно проследить поразительные параллели. Ферми родился двумя годами раньше фон Неймана, а прожили они до обидного мало, оба ушли из жизни в 53 года, в тот момент, когда были полны новых замыслов. И Ферми, и фон Нейман были одарены от природы необычайными способностями к научной работе и, сверх того, абсолютной памятью.

Способности фон Неймана в математике и лингвистике проявились необычайно рано. Известно, что в возрасте 6 лет он любил обмениваться с отцом шутками на древнегреческом языке, а впоследствии свободно говорил и писал на нескольких языках. Известным его хобби было изучение истории, в особенности культуры Византии. Говорят, что в этой области он был первоклассным специалистом. Естественно, что о таком человеке рассказывали множество историй и легенд.

Стоит привести одну подлинную историю, рассказанную Г. Голдстайном, много лет знавшим фон Неймана и работавшим вместе с ним над созданием одной из первых в мире ЭВМ. Молодой ученый обратился к фон Нейману с просьбой помочь найти долго не дававшееся ему доказательство придуманной им теоремы. Нейман немедленно, не задумываясь, дал это доказательство и записал его на доске. Через неделю юноша подошел к нему на приеме, еженедельно устраивавшемся Нейманом для друзей и сотрудников, и, смущаясь, сказал, что не может вспомнить доказательство. В ответ Нейман тут же, в заполненной гостями комнате, почти слово в слово повторил доказательство!

Столь же легендарной личностью был Ферми. Инженер Адольф Амидей, снабжавший пятнадцатилетнего Ферми книгами по математике, вспоминает, что «...Энрико достаточно было прочесть книгу один раз, чтобы знать ее в совершенстве. Когда он возвращал прочитанную книгу Дини по математическому анализу, я предложил ему оставить ее у себя, чтобы он мог заглядывать в нее. Ответ Ферми был поразительным: — Благодарю Вас, в этом нет нужды, я уверен, что запомнил все необходимое. Вообще, несколько лет спустя я буду понимать ее основные идеи еще более отчетливо, и если мне понадобится какая-нибудь формула, я легко выведу ее». Многочисленные свидетельства учеников и сотрудников Ферми подтверждают, что юный Энрико вполне объективно оценивал свои уникальные способности.



Встреча двух универсальных гениев — физика и математика — произошла в Америке, куда оба уехали, не пожелав оставаться под властью фашистских режимов. Ученик и сотрудник Ферми Эмилио Ceгpe, открывший вместе с О. Чемберленом и другими антипротон (1955 г.), рассказывает: «Ферми был чем-то вроде оракула, к которому любой физик мог обратиться за помощью. Мне помнится, как он и фон Нейман обсуждали гидродинамические задачи. Это было похоже на соревнование у доски в кабинете Ферми — кто первым решит поставленную задачу (первым обычно оказывался фон Нейман, который умел фантастически быстро считать). Однажды я прервал такое обсуждение, так как первоклассный знаток электроники из моей группы не мог справиться с новой и очень трудной задачей. Дело было срочное, и мы в отчаянии заглянули к Ферми. Примерно за 20 минут он придумал схему, которая могла решить вопрос... Другим оракулом лаборатории был фон Нейман. Однажды один известный физик-экспериментатор и я целый день безуспешно ломали голову над задачей, для решения которой нужно было взять некий интеграл. Поставивший нас в тупик интеграл был написан на доске, когда мы увидели идущего по коридору фон Неймана. «Не можете ли Вы помочь нам с этим интегралом?» — спросили мы у него. Фон Нейман глянул на доску и продиктовал ответ. Мы совершенно остолбенели. Подобные примеры можно было бы приводить без конца. Оба оракула относились друг к другу с дружбой и восхищением, а общий интерес к компьютерам укреплял эту дружбу. Ферми был знатоком численных расчетов и сразу же обратил внимание на перспективы использования быстродействующих ЭВМ. Он затратил много времени на освоение ЭВМ и много работал на них. Выдающаяся роль фон Неймана в разработке ЭВМ, без сомнения, общеизвестна».

Работа, о которой мы собираемся рассказать, была сделана в лабораториях Лос-Аламоса, возникших в связи с атомным проектом. Впоследствии эти лаборатории стали также одним из главных центров изучения нелинейных явлений, в частности хаоса. Не случайно, что Фейгенбаум сделал свое открытие будучи сотрудником этих лабораторий. Даже самым оригинальным и независимым умам для работы необходима определенная атмосфера. Что такое эта «атмосфера», определить очень трудно, еще труднее ее создать. В Лос-Аламосе такая атмосфера была, и работа Фейгенбаума появилась не на пустом месте.

Но вернемся к задаче, поставленной Ферми перед ЭВМ. Вместе с математиками Станиславом Уламом и Джоном Пастой он в 1952 г. задумал выполнить обширные машинные эксперименты по исследованию нелинейных задач. Первой из них и была задача о порождении теплового хаоса в цепочке грузиков с нелинейными пружинками. Как вспоминал С. Улам: «Ферми часто говорил, что будущие фундаментальные физические теории будут, вероятно, основаны на нелинейных уравнениях, и поэтому было бы полезно попрактиковаться в математике, необходимой для понимания нелинейных систем. План состоял в том, чтобы начать с простейшей, по возможности, физической модели... затем постепенно увеличивать сложность и общность решаемых на машине задач... Решение всех этих задач послужило бы подготовкой к установлению, в конце концов, модели движений системы, в которой должны были бы наблюдаться «перемешивание» и «турбулентность»... За одно лето Ферми весьма быстро научился программировать задачи для ЭВМ и мог не только спланировать общую схему расчета, но и самостоятельно провести подробное программирование всей задачи. Результаты вычислений, проведенных на старой машине МАНИАК, оказались интересными и весьма неожиданными для Ферми. По его мнению, они явились некоторым откровением». Машина сумела настолько удивить Ферми, что он, уже будучи смертельно больным, интересовался продолжением расчетов и говорил, что эта одна из самых важных задач, с которыми он когда-либо встречался. Что же так поразило Ферми?

Ферми, Паста и Улам предложили машине рассчитать колебания системы из 32 грузиков, связанных пружинками, которые при растяжении их на Δl создают возвращающую силу kΔl + αl)2. При этом нелинейная поправка αl)2 считалась малой по сравнению с основной, линейной силой kΔl. Таким образом, машина должна была решать систему из 32 уравнений, подобных уравнениям (4.8), но с добавленными в правой части нелинейными силами α [(xi+1 - xi)2 - (xi - xi-1)2]. Так как эти добавки малы, то можно следить не за движением отдельных частиц, а за изменением синусоидальных мод линейных уравнений, получающихся при α = 0. При α  0 моды перестают быть независимыми, и энергия медленно (по сравнению с их периодами) перекачивается из одной моды в другую.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Многоликий солитон"

Книги похожие на "Многоликий солитон" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Филиппов

Александр Филиппов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Филиппов - Многоликий солитон"

Отзывы читателей о книге "Многоликий солитон", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.