» » » Ричард Фейнман - 4a. Кинетика. Теплота. Звук


Авторские права

Ричард Фейнман - 4a. Кинетика. Теплота. Звук

Здесь можно скачать бесплатно "Ричард Фейнман - 4a. Кинетика. Теплота. Звук" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
4a. Кинетика. Теплота. Звук
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "4a. Кинетика. Теплота. Звук"

Описание и краткое содержание "4a. Кинетика. Теплота. Звук" читать бесплатно онлайн.








В качестве упражнения предлагаем читателю найти ряд Фурье для функции, показанной на фиг. 50.3.

Фиг. 50.3. Ступенчатая фун­кция. f(t)=+1 для 0<t<T/2 ,

f(t)=-1 для T/2<t<T.

Поскольку эту функцию нельзя записать в точной алгебраической форме, то брать интеграл от 0 до Т обычным способом невозможно. Однако если разделить его на две части: по интервалу от 0 до T/2 [на котором функция f(t)=1] и по интервалу от T/2 до T [на ко­тором f(t) -1], то интеграл легко берется. В результате должно получиться

где w=2p/T. Таким образом, оказывается, что для нашей сту­пенчатой волны (со специально выбранной фазой) будут только нечетные гармоники, причем их амплитуды обратно пропор­циональны частотам.

Давайте проверим, что для некоторого значения t результат (50.19) действительно дает снова f(t). Возьмем f = T/4или wt=p/2. Тогда

Сумма этого ряда равна p/4, а, стало быть, f(T)=1 .

§ 5. Теорема об энергии

Энергия волны пропорциональна квадрату ее амплитуды.

Для сложной волны энергия за один период пропорциональна m

Эту энергию можно связать с коэффициентами Фурье.

Напишем

После раскрытия квадрата в правой части мы получим сумму всевозможных перекрестных членов типа a5cos5wtb7cos7wt. Однако выше мы уже показали [уравнения (50.11) и (50.12)], что интегралы от всех таких членов по одному периоду равны нулю, так что останутся только квадратные члены, подобные a25cos25wt. Интеграл от любого квадрата косинуса или синуса по одному периоду равен Т/2, так что получаем

Это уравнение называют «теоремой об энергии», которая гово­рит, что полная энергия волны равна просто сумме энергий всех ее фурье-компонент. Применяя, например, эту теорему к ряду (50.19), мы получаем

поскольку [f(t)]2=1. Таким образом мы узнали, что сумма квад­ратов обратных нечетных чисел равна p2/8. Точно так же, выпи­сав сначала ряд Фурье для функции и используя затем теорему об энергии, можно доказать результат, понадобившийся нам в гл. 45, т. е. что 1+1/24+1/34+... равно p4/90.

§ 6. Нелинейная реакция

Наконец, в теории гармоник есть одно очень важное явление, которое необходимо отметить, учитывая его практическую важ­ность, но это уже относится к области нелинейных эффектов. Во всех рассмотренных нами до сих пор системах все предпола­галось линейным; реакция на действие силы, например пере­мещение или ускорение, всегда была пропорциональна силам. Токи в электрической цепи были тоже пропорциональны на­пряжениям и т. д. Теперь мы хотим рассмотреть случаи, когда строгая пропорциональность отсутствует. Представим на ми­нуту устройство, реакция которого xвыход=xвых в момент t опре­деляется внешним воздействием xвход = xвх в тот же момент t.

Например, xвх может быть силой, а хвых— перемещением, или хвх ток, а xвых— напряжение. Если бы устройство было ли­нейное, то мы бы получили

xвых(t)=Kxвх(t), (50.24)

где К — постоянная, не зависящая ни от t, ни от хек. Предполо­жим, однако, что устройство только приблизительно линейное, т. е. на самом деле нужно писать

xвых(t)=K[xвх(t)+ex2вх(t)]. (50.25)

где e мало по сравнению с единицей. Такие линейная и нелиней­ная реакции показаны на фиг. 50.4.

Фиг. 50.4. Реакции, а — линейная,

xвых=kxвх; б—нелинейная, xвых =k(хвх+ex2вх).

Нелинейная реакция приводит к нескольким важным прак­тическим следствиям. Некоторые из них мы сейчас обсудим. Посмотрим сначала, что получается, если пропустить через по­добное устройство «чистый» тон. Пусть xвх=coswt. Если мы по­строим график зависимости xвых от времени, то получим сплош­ную кривую, показанную на фиг. 50.5.

Фиг. 50.5. Реакция нелинейного устройства на входящий сигнал coswt.

Для сравнения показана линейная реак­ция.

Для сравнения там же проведена пунктирная кривая, представляющая реакцию ли­нейной системы. Мы видим, что на выходе получается уже не косинусообразная функция. Она более острая в вершине и более плоская в основании. Поэтому мы говорим, что выходной сигнал искажен. Однако, как известно, такая волна не будет уже чистым тоном, а приобретает какие-то высшие гармоники Можно найти эти гармоники. Подставляя xвх=coswt в уравнение (50.25), получаем

хвых=К(coswt+ecos2wt). (50.26) Используя равенство cos2q = 1/2(l-cos2q), находим

xвых=K(coswt+ e/2-e/2cos2wt) . (50.27)

Таким образом, в выходящей волне присутствует не только основ­ная компонента, которая была во входящей волне, но и некоторая доля второй гармоники. Кроме того, в выходящей волне появился постоянный член К(e/2), который соответствует сдви­гу среднего значения, показанному на фиг. 50.5. Эффект воз­никновения сдвига среднего значения называется выпрямлением. Нелинейное устройство будет выпрямлять и давать на выходе высшие гармоники. Хотя предположенная нами нелинейность только добавляет вторую гармонику, нелинейность высшего

порядка, например х3вхили x4вх, даст уже более высокие гармо­ники.

Другим результатом нелинейной реакции является моду­ляция. Если входящая функция содержит два (или больше) чистых тона, то на выходе получатся не только их гармоники, но и другие частотные компоненты. Пусть хвхcosw1t+Bcosw2t, причем w1 и w2 не находятся в рациональном отношении друг к другу. Тогда в дополнение к линейному члену (равному произ­ведению К на входящую волну) на выходе мы получим

xвых=Ke(Acosw1t+Bcosw2t)2, (50.28)

хвых=Кe(А2cos2w1t+В2cos2w2t+2AB cosw1tcosw2t). (50.29)

Первые два члена в скобках уравнения (50.29) — старые зна­комые. Они дают нулевую и вторую гармоники, но последний член — это уже нечто новое.

На этот новый «перекрестный член» АВcosw1tcosw2t можно смотреть с двух сторон. Во-первых, если две частоты сильно отличаются друг от друга (например, w1 много больше w2), то мы можем считать, что перекрестный член представляет косинусообразные колебания с переменной амплитудой. Я имею в виду такую запись:

АВ cosw1tcosw2t=C(t)cosw1t, (50.30)

где

С(t)=АВсоsw2t. (50.31)

Мы говорим, что амплитуда колебаний cosw1 модулируется с частотой w2.

Во-вторых, этот же перекрестный член можно рассматри­вать с другой точки зрения:

ABcosw1tcosw2t= AB/2[cos (w1-w2) t+cos(w1 -+w2) t], (50.32)

т. е. можно сказать, что возникают две новые компоненты, одна из которых равна сумме частот w1+w2, а другая — разности

Таким образом, существуют два различных, но эквивалент­ных способа толкования одного и того же явления. В предель­ном случае w1>>w2 можно связать эти две различные точки зре­ния, заметив, что поскольку (w1+w2) и (w1-w2) близки друг к другу, то между ними должны наблюдаться биения. Но эти биения дают в результате модуляцию амплитуды колебаний со средней частотой w1, половинкой разности частот 2w2. Теперь вы видите, почему эти два описания эквивалентны.

Итак, мы обнаружили, что нелинейная реакция дает не­сколько эффектов: выпрямление, возникновение гармоник и модуляцию, т. е. возникновение компонент с суммой и разно­стью частот.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "4a. Кинетика. Теплота. Звук"

Книги похожие на "4a. Кинетика. Теплота. Звук" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 4a. Кинетика. Теплота. Звук"

Отзывы читателей о книге "4a. Кинетика. Теплота. Звук", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.