» » » Ричард Фейнман - 4a. Кинетика. Теплота. Звук


Авторские права

Ричард Фейнман - 4a. Кинетика. Теплота. Звук

Здесь можно скачать бесплатно "Ричард Фейнман - 4a. Кинетика. Теплота. Звук" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
4a. Кинетика. Теплота. Звук
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "4a. Кинетика. Теплота. Звук"

Описание и краткое содержание "4a. Кинетика. Теплота. Звук" читать бесплатно онлайн.








Вернемся теперь к общему движению струны. Оказывается, что любое возможное движение можно рассматривать как одно­временное действие некоторого числа собственных колебаний. На самом деле для описания наиболее общего движения долж­но быть одновременно возбуждено бесконечное число собствен­ных гармоник. Чтобы получить некоторое представление о том, что происходит при таком сложении, давайте посмотрим, что получится при одновременном колебании двух первых соб­ственных гармоник. Пусть первая из них колеблется так, как это показано в ряде схематических чертежей фиг. 49.3, где изображены отклонения струны через равные промежутки вре­мени на протяжении полуцикла низшей частоты.

Предположим теперь, что одновременно с первой собствен­ной гармоникой работает и вторая. Последовательные положе­ния струны при возбуждении этой собственной гармоники показаны тоже на фиг. 49.3 пунктирной линией. По отношению к первой гармонике они сдвинуты по фазе на 90°. Это означает, что в начальный момент никакого отклонения не было, но ско­рости двух половинок струны направлены в противоположные стороны. Вспомним теперь общий принцип линейных систем: если взять любые два решения, то сумма их тоже будет реше­нием. Поэтому перемещения, полученные сложением двух ре­шений, показанных на фиг. 49.3, будут третьим возможным ре­шением

Фиг. 49.3. Две гармоники, напоминающие при сложе­нии бегущую волну.

На этом же рисунке показан и результат сложения, который начинает напоминать горб, пробегающий взад и вперед по струне от одного конца до другого, хотя с помощью только двух собственных гармоник нельзя построить доста­точно хорошей картины такого движения; их нужно гораздо больше. Этот результат представляет на самом деле частный случай основного принципа линейных систем, который гла­сит:

Любое движение можно рассматривать как составленное из различных собственных гармоник, взятых с надлежащими ам­плитудами и фазами.

Значение этого принципа обусловлено тем фактом, что каж­дое собственное колебание — очень простая вещь — это просто синусоидальное движение во времени. По правде говоря, даже общее движение струны — еще не самая сложная вещь; суще­ствует движение куда более сложное, скажем такое, как виб­рация крыльев самолета. Тем не менее даже у крыльев само­лета можно обнаружить некие собственные кручения с опре­деленными частотами. А если так, то полное движение можно рассматривать как суперпозицию гармонических колебаний (за исключением тех случаев, когда вибрация настолько велика, что система уже не может рассматриваться как линейная).

§ 3. Двумерные собственные колебания

Сейчас мы перейдем к рассмотрению очень интересного поведения собственных гармоник в двумерных колебаниях. До сих пор мы говорили только об одномерных колебаниях: натянутой струне или звуковых волнах в трубе. В конце концов мы должны добраться до трех измерений, но сначала давайте остановимся на более легком этапе — этапе двумерных колеба­ний. Возьмем для большей определенности прямоугольный ре­зиновый барабан, перепонка которого закреплена по краям так, что на прямоугольном крае барабана она перемещаться не может. Пусть размеры прямоугольника будут

равны а и 6, как это показано на фиг. 49.4.

Фиг. 49.4. Колебание прямо­угольной пластинки.

Прежде всего, каковы ха­рактеристики возможного движения? Можно начать с того же, с чего мы начали, когда рассматривали пример со стру­ной. Если бы никакого закрепления не было вовсе, то можно было бы ожидать появления волн, бегущих в некото­ром направлении, например синусоидальной волны, опи­сываемой функцией ехр(iwt) ехр[-i(kчx)+i(kyy)], направле­ние движения которой зависит от относительной величины чисел kxи ky. А как теперь сделать узел на оси х, т. е. при y=0? Используя ту же идею, что и для одномерной струны, можно добавить волну, описываемую комплексной функцией

-exp(iwt)ехр[-i(kxx)-i(kyy)].

Суперпозиция этих волн в результате дает нулевое переме­щение при y=0 независимо от того, каковы будут значения х и t. (Хотя эти функции будут определены и для отрицательных значений у там, где никакого барабана нет и колебаться не­чему, но на это можно не обращать никакого внимания. Ведь нам хотелось устранить перемещение при у=0, и мы добились этого.) Вторую функцию в этом случае можно рассматривать как отраженную волну.

Однако нам нужно получить узел не только на линии y=0, но и на линии у=b. Как же это сделать? Решение такой задачи связано с некоторыми вещами, которыми мы занимались при изучении отражения света от кристалла. Волны, гасящие друг друга при y=0, могут сделать то же самое и при у=b, только когда 2b sin 0 равно целому числу длин волн l, (q — угол, пока­занный на фиг. 49.4):

ml=2bsinq, m=0, 1, 2, .... (49.7)

Точно таким же образом, т.е. сложением еще двух функций [-exp(iwt)]exp[i(kxx)+ i(kyy)] и [+exp(ict)}exp[i(kxx)-i(kyy)], каждая из которых представляет отражение другой от линии х=0, можно устроить узел и на оси у. Условие того, что линия х=а будет тоже узловой, получается так же, как и условие при у=b, т. е. 2acosq должно быть равно целому числу длин волн:

nl = 2acosq. (49.8)

Тогда окончательный результат таков: волны, «заключенные» в ящике, имеют вид стоячей волны, т. е. образуют какие-то определенные собственные гармоники.

Таким образом, если мы хотим иметь дело с собственными гармониками, то должны удовлетворить двум написанным выше условиям. Для начала давайте найдем длину волны. Ис­ключив из уравнений (49.7) и (49.8) угол q, можно выразить длину волны через a, b, n и т. Легче всего это сделать так: сначала разделить обе части уравнений соответственно на 2b и 2a, а затем возвести их в квадрат и сложить. В результате мы получим уравнение

sin2q+cos2q =1=(nl/2a)2+(ml/2b)2,

которое легко разрешить относительно l:

Итак, мы определили длину волны через два целых числа, а по длине волны мы немедленно получаем частоту w, ибо, как известно, частота равна 2pc, деленной на длину волны.

Этот результат настолько важен и интересен, что необхо­димо теперь получить его строго математически без использо­вания аналогий с отражением. Давайте представим колебание в виде суперпозиции четырех волн, подобранных таким обра­зом, чтобы все четыре линии x=0, х=а, y=0 и у=b были узло­выми. Потребуем еще, чтобы все эти волны имели одинаковую частоту, т. е. чтобы результирующее движение представляло собственное колебание. Из главы об отражении света мы уже знаем, что функция exp(iwt)exp[-i(kxx)+i(kyy)] опи­сывает волну, идущую в направлении, указанном на фиг. 49.4. По-прежнему остается справедливым уравнение (49.6), т. е. k =w/c, с той разницей, что теперь

k2=k2x+k2y. (49.10)

Из рисунка ясно, что kx=kcosq, a ky=ksinq.

Таким образом, наше выражение для перемещения прямо­угольной перепонки барабана (назовем это перемещение j запишется в виде

Хотя выглядит это довольно неприглядно, сумма таких экспо­нент, в сущности, не так уж громоздка. Их можно свернуть в синусы, так что перемещение, как оказывается, приобретает вид

Другими словами, получились знакомые синусоидальные колебания, форма которых тоже синусоидальна как в направ­лении оси х, так и в направлении оси у. Граничные условия при x= 0 и y=0 удовлетворяются автоматически. Однако мы хо­тим, кроме того, чтобы j обращалось в нуль при х=а и у=b. Для этого мы должны наложить два дополнительных условия, а именно kxa и kxb должны быть равны целому числу p (эти це­лые числа могут быть разными для kxa и kyb!). Но поскольку, как мы видели, kx=kcosq и ky=ksinq, то отсюда немедленно получаются уравнения (49.7) и (49.8), а из них следует оконча­тельный результат (49.9).

Возьмем теперь для примера прямоугольник, ширина ко­торого вдвое больше высоты. Если положить а=2b и восполь­зоваться уравнениями (49.4) и (49.9), то можно вычислить ча­стоты всех гармоник


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "4a. Кинетика. Теплота. Звук"

Книги похожие на "4a. Кинетика. Теплота. Звук" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 4a. Кинетика. Теплота. Звук"

Отзывы читателей о книге "4a. Кинетика. Теплота. Звук", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.