» » » Ричард Фейнман - 5a. Электричество и магнетизм


Авторские права

Ричард Фейнман - 5a. Электричество и магнетизм

Здесь можно скачать бесплатно "Ричард Фейнман - 5a. Электричество и магнетизм" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
5a. Электричество и магнетизм
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "5a. Электричество и магнетизм"

Описание и краткое содержание "5a. Электричество и магнетизм" читать бесплатно онлайн.








Фиг. 7.5. Электрическое поле возле края тонкой за­земленной пластины.

Физическая картина показана на фиг. 7.5. Дальнейшие примеры — это функция

(7.13)

дающая нам поле снаружи прямого угла, функция

(7.14)

дающая поле заряженной нити, и функция

(7.15)

изображающая поле двумерного аналога электрического ди­поля, т. е. двух параллельных прямых, заряженных противо­положным знаком и помещенных вплотную друг к другу.

Больше этим вопросом в нашем курсе мы заниматься не бу­дем; мы должны только подчеркнуть, что, хотя техника комп­лексных переменных часто оказывается очень мощной, она ограничена все же только двумерными задачами; к тому же это все-таки косвенный метод.

§ 3. Колебания плазмы

Займемся теперь такими физическими задачами, в которых поле создается не закрепленными зарядами и не зарядами на проводящих поверхностях, а сочетанием обоих факторов. Ины­ми словами, полем управляют одновременно две системы урав­нений: 1) уравнения электростатики, связывающие электриче­ское поле с распределением зарядов; 2) уравнения из другой области физики, определяющие положение или движения за­рядов в поле.

Сперва мы разберем один динамический пример. В нем дви­жение зарядов контролируется законами Ньютона. Простой пример такого положения вещей наблюдается в плазме, в ионизованном газе, состоящем из ионов и свободных электронов распределенных в какой-то области пространства. Ионосфера (верхний слой атмосферы) служит примером такой плазмы. Ультрафиолетовые лучи Солнца отрывают от молекул воздуха электроны и создают свободные электроны и ионы. В плазме положительные ионы намного тяжелее электронов, так что можно пренебречь движением в ней ионов но сравнению с дви­жением электронов.

Пусть n0будет плотностью электронов в невозмущенном равновесном состоянии. Такой же должна быть и плотность положительных ионов, потому что в невозмущенном состоянии плазма нейтральна. Теперь допустим, что электроны каким-то образом выведены из равновесия. Что тогда получится? Если плотность электронов в какой-то области возросла, они начнут отталкиваться и стремиться вернуться в прежнее положение равновесия. Двигаясь к своим первоначальным положениям, они наберут кинетическую энергию и вместо того, чтобы заме­реть в равновесной конфигурации, проскочат мимо. Начнутся колебания. Нечто похожее наблюдается в звуковых волнах, но там возвращающей силой было давление газа. В плазме воз­вращающая сила — это действующее на электроны электриче­ское притяжение.

Чтобы упростить рассуждения, мы будем заниматься только одномерным движением электронов — скажем, в направлении x;. Предположим, что электроны, первоначально находившиеся в точке х, к моменту t сместились из положения равновесия на расстояние s (x, t). Раз они сместились, то плотность их, вообще говоря, изменилась. Это изменение подсчитать легко. Если посмотреть на фиг. 7.6, то видно, что электроны, вначале нахо­дившиеся между плоскостями а и b, сдвинулись и теперь нахо­дятся между плоскостями а' и b'. Количество электронов между а и b прежде было пропорционально n0Dх; теперь то же их ко­личество находится в промежутке шириной Dx+Ds.

Фиг. 7.6. Движение волны в плазме.

Электроны от плоскости а сдвига­ются к а', а от b —к b'.

Плотность

теперь стала

(7.16)

Если изменение плотности мало, то можно написать [заменяя с помощью биномиального разложения (1+e)-1 на (1-e)]

(7.17)

Что касается ионов, то предположим, что они не сдвинулись заметно с места (инерция-то у них куда больше), так что плот­ность их осталась прежней, n0.Заряд каждого электрона -qe, и средняя плотность заряда в любой точке равна

или

(7.18)

(здесь Ds/Dx записано через дифференциалы).

Далее, уравнения Максвелла связывают с плотностью заря­дов электрическое поле. В частности,

(7.19)

Если задача действительно одномерна (и никаких полей, кроме вызываемых смещением электронов, нет), то у электрического поля Е есть одна-единственная составляющая Ех. Уравнение (7.19) вместе с (7.18) приведет к

(7.20)

Интегрируя (7.20), получаем

(7.21)

Постоянная интегрирования К равна нулю, потому что Ех=0 при s=0.

Сила, действующая на смещенный электрон, равна

(7.22)

т. е. возвращающая сила пропорциональна смещению s элект­рона. Это приведет к гармоническим колебаниям электронов. Уравнение движения смещенного электрона имеет вид

(7.23)

Отсюда следует, что s меняется по гармоническому закону. Во времени s меняется как cos wt или, если использовать экспоненту (см. вып. 3), как

(7.24)

Частота колебаний wропределяется из (7.23):

(7.25)

Это число, характеризующее плазму, называют собственной частотой колебаний плазмы, или плазменной частотой.

Оперируя с электронами, многие предпочитают получать ответы в единицах e2, определяемых как

(7.26)

При этом условии (7.25) превращается в

(7.27)

В таком виде эту формулу можно встретить во многих книгах.

Итак, мы обнаружили, что возмущения плазмы приводят к свободным колебаниям электронов вблизи положения равновесия с собственной частотой wр, пропорциональной корню квад­ратному из плотности электронов. Плазменные электроны ве­дут себя как резонансная система, подобная описанным в вып. 2, гл. 23.

Этот собственный резонанс плазмы приводит к интересным эффектам. Например, при прохождении радиоволн сквозь ионо­сферу обнаруживается, что они могут пройти только в том слу­чае, если их частота выше плазменной частоты. А иначе они от­ражаются обратно. Для связи с искусственным спутником мы используем высокие частоты. Если же мы хотим связаться с ра­диостанцией, расположенной где-то за горизонтом, то необхо­димы частоты меньшие, чем плазменная частота, иначе сигнал не отразится обратно к Земле.

Другой интересный пример колебаний плазмы наблюдается в металлах. В них содержится плазма из положительных ионов и свободных электронов. Плотность n0там очень высока, зна­чит, велика и wр. Но колебания электронов все же можно обна­ружить. Ведь, согласно квантовой механике, гармонический осциллятор с собственной частотой wробладает уровнями энер­гии, отличающимися друг от друга на величину hwр. Значит, если, скажем, обстреливать электронами алюминиевую фольгу и очень точно измерять их энергию по ту сторону фольги, то можно ожидать, что временами электроны будут из-за колеба­ний плазмы терять как раз энергию hwp. Так это и происходит. Впервые это явление наблюдалось экспериментально в 1936 г. Электроны с энергиями от нескольких сот до несколь­ких тысяч электронвольт, рассеиваясь от тонкой металлической фольги или проходя сквозь нее, теряли энергию порциями. Эффект оставался непонятым до 1953 г., пока Бом и Пайнс не показали, что все это можно объяснить квантовым возбужде­нием плазмы в металле.

§ 4. Коллоидные частицы в электролите

Обратимся к другому явлению, когда местоположение заря­дов определяется потенциалом, создаваемым в какой-то степени самими зарядами. Такой эффект существен для поведения коллоидов. Коллоид — это взвесь маленьких заряженных час­тичек в воде. Хотя эти частички и микроскопические, но по сравнению с атомом они все же очень велики. Если бы коллоид­ные частицы не были заряжены, они бы стремились коагулиро­вать (слиться) в большие комки; но, будучи заряженными, они отталкиваются друг от друга и остаются во взвешенном состоя­нии. Если в воде растворена еще соль, то она диссоциирует (расползается) на положительные и отрицательные ионы. (Та­кой раствор ионов называется электролитом.) Отрицательные ионы притягиваются к коллоидным частицам (будем считать, что их заряды положительны), а положительные — отталки­ваются. Нам нужно узнать, как ионы, окружающие каждую частицу коллоида, распределены в пространстве.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "5a. Электричество и магнетизм"

Книги похожие на "5a. Электричество и магнетизм" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 5a. Электричество и магнетизм"

Отзывы читателей о книге "5a. Электричество и магнетизм", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.