» » » Ричард Фейнман - 7. Физика сплошных сред


Авторские права

Ричард Фейнман - 7. Физика сплошных сред

Здесь можно скачать бесплатно "Ричард Фейнман - 7. Физика сплошных сред" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
7. Физика сплошных сред
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "7. Физика сплошных сред"

Описание и краткое содержание "7. Физика сплошных сред" читать бесплатно онлайн.








Теперь же продолжим рассуждения о нашей теории, а потом вернемся снова назад и обсудим некоторые ошибки избранного нами пути. Если магнитный момент какого-то электрона на­правлен вверх, то его энергия частично обусловлена внешним полем, а частично связана с тенденцией спинов быть параллель­ными. Поскольку при параллельных спинах энергия меньше, то эффект получается таким же, как и от «внешнего эффектив­ного поля». Но помните, что обязано это не истинным магнит­ным силам, а более сложному взаимодействию. Во всяком слу­чае, в качестве выражений для энергии двух спиновых состояний «магнитного» электрона мы примем уравнения (37.1). От­носительная вероятность этих двух состояний при температуре Т пропорциональна exp[-энергия/kT], что можно записать как е±х, где х=|m|(H+lM/e0с2)/kT. Если затем мы вычислим среднюю величину магнитного момента, то найдем (как и в предыдущей главе), что она равна

M=N |m|thx. (37.2)

Теперь я могу подсчитать внутреннюю энергию материала. Отметим, что энергия электрона в точности пропорциональна магнитному моменту, так что все равно, вычислять ли средний момент или среднюю энергию. Среднее значение энергии будет при этом

Но это не совсем верно. Выражение lM/e0c2 представляет взаимодействие всех возможных пар атомов, а мы должны пом­нить, что каждую пару следует учитывать только один раз. (Ког­да мы учитываем энергию одного электрона в поле остальных, а затем энергию второго электрона в поле остальных, то мы еще раз учитываем часть первой энергии.) Поэтому выражение взаи­модействия мы должны разделить на 2 и наша формула для энергии приобретет вид

В предыдущей главе мы обнаружили одну очень интересную особенность: для каждого материала ниже определенной темпе­ратуры существует такое решение уравнений, при котором маг­нитный момент не равен нулю даже в отсутствие внешнего на­магничивающего поля. Если в уравнении (37.2) мы положим Н=0, то найдем

где Мнас=N|m| и Tc=|m|lMнас./ke0c2. Решив это уравнение (графи­чески или каким-то другим способом), мы найдем, что отноше­ние М/Мнаскак функция от T/Tcпредставляет кривую, наз­ванную на фиг. 37.1 «квантовая теория».

Фиг. 37.1. Зависимость спонтанной намагниченности (Н=0) ферромагнитных кристаллов от температуры.

Пунктирная кривая «Кобальт, Никель» — это полученная экспериментально кри­вая для кристаллов этих элементов. Теория и эксперимент находятся в разумном согласии. Там же представлены резуль­таты классической теории, в которой вычисления проводились в предположении, что атомные магнитики могут иметь всевоз­можные ориентации в пространстве.

Можете убедиться, что это предположение приводит к предсказаниям, которые весьма далеки от экспериментальных данных.

Даже квантовая теория недостаточно хорошо описывает наблюдаемое поведение при высоких и низких температурах. Причина этого отклонения заключена в принятом нами доволь­но грубом приближении: мы предполагали, что энергия атома зависит лишь от средней намагниченности соседних с ним ато­мов. Другими словами, каждый атом со спином, направленным вверх, находящийся по соседству с данным атомом, из-за квантовомеханического эффекта выстраивания вносит свой вклад в энергию. А сколько таких атомов? В среднем это из­меряется величиной намагниченности, но это только в сред­нем. Может оказаться, что для какого-то одного атома спины всех его соседей направлены вверх. Тогда его энергия будет выше средней. У другого же спины некоторых соседей направ­лены вверх, а некоторых — вниз, а среднее может быть нулем, и тогда никакого вклада в энергию вообще не будет и т. д. Из-за того что атомы в разных местах имеют различное окружение с различным числом направленных вверх и вниз спинов, нам следовало бы воспользоваться более сложным способом усред­нения. Вместо того чтобы брать один атом, подверженный сред­нему влиянию, нам следовало бы взять каждый атом в его реаль­ной обстановке, подсчитать его энергию, а затем найти среднюю энергию. Но как же все-таки определить, сколько соседей ато­мов направлено вверх, а сколько — вниз? Это как раз и нужно вычислить, но здесь мы сталкиваемся с очень сложной задачей внутренних корреляций,— задачей, которую никому еще не уда­валось решить. Эта животрепещущая и интригующая проблема в течение многих лет волновала умы физиков; по этому вопросу писалось множество статей крупнейшими учеными, но и они не могли найти полного решения.

Оказывается, что при низких температурах, когда почти все атомные магниты направлены вверх и лишь некоторые направ­лены вниз, задача решается довольно легко; то же самое можно сказать и о высоких температурах, значительно превышаю­щих температуру Кюри Тс, когда почти все они направлены совершенно случайно. Часто легко вычислить небольшие откло­нения от некоторой простой идеализированной теории, и до­вольно ясно, почему такие отклонения имеются при низких температурах. Физически понятно, что по статистическим при­чинам намагниченность при высоких температурах должна исчезать. Но точное поведение вблизи точки Кюри никогда во всех подробностях не было установлено. Это очень интересная задача, над которой стоит потрудиться, если когда-нибудь вам вздумается взяться за еще не решенную проблему.

§ 2. Термодинамические свойства

В предыдущей главе мы заложили основу, необходимую для вычисления термодинамических свойств ферромагнитных ма­териалов. Они, естественно, связаны с внутренней энергией кристалла, которая обусловлена взаимодействием между раз­личными спинами и определяется формулой (37.3). Для нахож­дения энергии, связанной со спонтанной намагниченностью (ни­же точки Кюри), мы можем в уравнении (37.3) положить Н=0 и, заметив, что thx=М/Мнас, найти, что средняя энергия про­порциональна М2:

Если мы теперь построим график зависимости намагниченности от температуры, то получим кривую, которая описывается от­рицательным квадратом функции (37.1) и представлена на фиг. 37.2, а. Если бы мы измеряли удельную теплоемкость такого материала, то получили бы кривую (фиг. 37.2, б), ко­торая представляет производную кривой, изображенной на фиг. 37.2, а.

Фиг. 37.2. Энергия в единице объема и удельная теплоемкость ферромагнитного материала.

С увеличением тем­пературы эта кривая медленно растет, но затем при Т = Тснео­жиданно падает до нуля. Резкое падение вызвано изменением на­клона кривой магнитной энер­гии, и кривая ее производной попадает прямо в точку Кюри. Таким образом, совершенно без магнитных измерений, лишь наб­людая за термодинамическими свойствами, мы бы смогли уста­новить, что внутри железа или никеля что-то происходит. Однако как из эксперимента, так и из улучшенной теории (с учетом внутренних флуктуации) следует, что эти простые кривые неправильны и что истинная картина на самом деле бо­лее сложна. Пик этих кривых поднят выше, а падение до нуля происходит несколько медленнее. Даже если температура до­статочно велика, так что спины в среднем распределены совер­шенно случайно, все равно попадаются области с определенным значением намагниченности, и спины в этих областях продол­жают давать небольшую дополнительную энергию взаимодей­ствия, которая медленно уменьшается с ростом температуры и увеличением беспорядка. Так что реальная кривая выглядит так, как показано на фиг. 37.2, в. Одна из целей физики сегод­няшнего дня — найти точное теоретическое описание удельной теплоемкости вблизи точки перехода Кюри — захватывающая проблема, не решенная до сих пор. Естественно, что эта пробле­ма очень тесно связана с формой кривой намагничивания в той же самой области.

Опишем теперь некоторые эксперименты, отнюдь не термоди­намического характера, которые показывают, что мы все же в каком-то смысле правы в нашей интерпретации магнетизма. Когда материал при достаточно низких температурах намагни­чен до насыщения, то М очень близка к Мнас, т. е. почти все спины, равно как и магнитные моменты, параллельны. Это можно проверить экспериментально. Предположим, что мы подвесили магнитную па­лочку на тонкой струне, а затем окружили ее катушкой, так что мо­жем менять магнитное поле, не притрагиваясь к магниту и не прикладывая к нему никакого момента сил. Это очень трудный эксперимент, ибо магнитные силы столь велики, что любая нерегулярность, любой перекос или несо­вершенство в железе могут дать случайный момент. Однако такой эксперимент был выполнен со всей необходимой аккурат­ностью и роль случайных моментов была сведена до минимума. С помощью магнитного поля катушки, которая окружает па­лочку, мы сразу можем перевернуть все магнитные моменты. Когда мы это проделаем, то заодно «сверху вниз» перевернутся и все моменты количества движения, связанные со спином (фиг. 37.3).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "7. Физика сплошных сред"

Книги похожие на "7. Физика сплошных сред" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 7. Физика сплошных сред"

Отзывы читателей о книге "7. Физика сплошных сред", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.