» » » Ричард Фейнман - 9. Квантовая механика II


Авторские права

Ричард Фейнман - 9. Квантовая механика II

Здесь можно скачать бесплатно "Ричард Фейнман - 9. Квантовая механика II" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
9. Квантовая механика II
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "9. Квантовая механика II"

Описание и краткое содержание "9. Квантовая механика II" читать бесплатно онлайн.








Но если мы не в состоянии измерять разность потенциалов между двумя сторонами p—n-перехода, то откуда уверенность, что перепад потенциалов, показанный на фиг. 12.9, действитель­но существует? Ну, во-первых, можно осветить переход светом. Когда фотоны света поглощаются, они могут образовать пару электрон — дырка. В том сильном электрическом поле, кото­рое существует в переходе (равном наклону потенциальной кривой на фиг. 12.9), дырку затянет в p-область, а электрон — в n-область. Если теперь обе стороны перехода подсоединить ко внешней цепи, эти добавочные заряды вызовут ток. Энергия света перейдет в электрическую энергию перехода. Солнечные батареи, которые генерируют для спутников электрическую мощность, действуют именно на этом принципе.

Обсуждая свойства полупроводникового перехода, мы пред­полагали, что дырки и электроны действуют более или менее независимо, если не считать того, что они как-то все же приходят в тепловое равновесие. Когда мы говорили о токе, получающемся при освещении перехода светом, то предполагали, что электрон или дырка, образующиеся в области перехода, прежде чем анни­гилировать с носителем противоположной полярности, успеют попасть в само тело кристалла. В непосредственной близости от перехода, где плотности носителей обоих знаков примерно одинаковы, аннигиляция пар электрон — дырка (называемая часто «рекомбинацией») — очень важный эффект, и его следует принимать во внимание при детальном анализе полупроводни­кового перехода.

Мы предполагали, что дырка или электрон, образуемые в области перехода, имеют хороший шанс еще до рекомбинации попасть в основное тело кристалла. Типичное время, требую­щееся электрону или дырке для того, чтобы найти противопо­ложного партнера и аннигилировать, для типичных полупро­водниковых материалов колеблется между 10-3 и 10-7 сек. Кста­ти, это время много больше времени среднего свободного пробега t между столкновениями с узлами рассеяния в кри­сталле,— того времени, которым мы пользовались при анализе проводимости. В типичном p—n-переходе время, требуемое на то, чтобы смести в тело кристалла электрон или дырку, воз­никшую в области перехода, намного меньше времени рекомби­нации. Поэтому большинство пар вливается во внешний ток.

§ 5. Выпрямление на полупроводниковом переходе

Теперь мы покажем, как получается, что p—n-переход дей­ствует как выпрямитель. Если мы к переходу приложим напря­жение одного знака, то пойдет большой ток, если другого — тока почти не будет. А если к переходу приложить переменное напряжение, то ток пойдет только в одну сторону — он «выпря­мится». Посмотрим еще раз, что получается в условиях равно­весия, описанных кривыми фиг. 12.9. В материале p-типа имеет­ся высокая концентрация Npположительных носителей. Эти носители повсюду диффундируют, и некоторое их количество каждую секунду приближается к переходу. Этот ток положи­тельных носителей, достигающих перехода, пропорционален Np. Большая часть их, однако, разворачивается обратно, не будучи в состоянии взять высокий потенциальный холм у пере­хода, и только доля их проходит дальше. Имеется также ток положительных носителей, приближающихся к пе­реходу с другой стороны. Этот ток тоже пропорционален плот­ности положительных носителей в n-области, но здесь плотность носителей намного ниже плотности в p-области. Когда положи­тельные носители приближаются из n-области к переходу, они обнаруживают перед собой холм с отрицательным склоном и сходу соскальзывают под гору, на p-сторону перехода. Обо­значим этот ток I0. В условиях равновесия токи в обе стороны одинаковы. Значит, можно ожидать, что будет выполняться следующее соотношение:

Вы замечаете, что оно на самом деле совпадает с (12.10). Мы просто вывели его другим способом.

Допустим, однако, что мы снизили напряжение на n-стороне перехода на величину DV — это можно сделать, приложив к переходу внешнюю разность потенциалов. Теперь разница в потенциалах по обе стороны потенциального холма уже не V, а V-DV. У тока положительных носителей из p-области в n-область теперь в показателе экспоненты будет стоять именно эта разность потенциалов. Обозначая этот ток через I1; имеем

Этот ток превосходит ток I0 в раз. Значит, между I1 и I0 существует следующая связь:

Ток из p-области при приложении внешнего напряжения DV растет по экспоненте. А ток положительных носителей из n-области остается постоянным, пока DV не слишком велико.

Достигая барьера, эти носители по-прежнему будут видеть перед собой идущий под гору потенциал и будут все скатываться в p-область. (Если DV больше естественной разности потенциа­лов V, положение может измениться, но что случается при таких высоких напряжениях, мы рассматривать не будем.) В итоге ток положительных носителей I, текущий через переход, будет определяться разницей токов в обе стороны:

Дырочный ток I течет в n-область. Там дырки диффундируют в самую глубь n-области и могут, вообще говоря, аннигилиро­вать на основной массе отрицательных носителей электронов. Убыль электронов, теряемых при этой аннигиляции, воспол­няется током электронов из внешнего контакта материала n-типа.

Когда DV=0, то и ток в (12.14) равен нулю. Если DV положительна, ток с напряжением резко растет, а если DV отрицательна, знак тока меняется, но экспоненциальный член вскоре становится пренебрежимо малым, и отрицательный ток никогда не превышает I0 — величины, которая, по нашему предположению, очень мала. Этот обратный ток I0 ограничен той слабой плотностью, которой обладают неосновные носители в n-области перехода.

Если вы проведете в точности тот же анализ для тока отри­цательных носителей, текущего через переход, сперва без внешней разности потенциалов, а после с небольшой приложен­ной извне разностью потенциалов DV, то для суммарного электронного тока вы опять получите уравнение, похожее на (12.14). Поскольку полный ток есть сумма токов носите­лей обоего рода, то (12.14) применимо и к полному току, если только отождествить I0 с максимальным током, кото­рый может течь при переме­не знака напряжения.

Вольтамперная характеристика (12.14) показана на фиг. 12.10.

Фиг. 12.10. Зависимость тока через переход от приложенного к нему напряжения.

Она демонстрирует нам типичное поведение кристаллических диодов, подобных тем, которые применяются в современных вычислительных машинах. Нужно только заметить, что (12.14) справедливо лишь при невысоких напряжениях. При напряже­ниях, сравнимых с естественной внутренней разностью потен­циалов V (или превышающих ее), в игру входят новые явления и ток уже не подчиняется столь простому уравнению.

Быть может, вы вспомните, что в точности такое же уравне­ние мы получили, говоря о «механическом выпрямителе» — храповике и собачке [см. гл. 46 (вып. 4)]. Мы получали те же уравнения, потому что лежащие в их основе физические про­цессы весьма схожи.

§ 6. Транзистор

Пожалуй, самым важным применением полупроводников является изобретение транзистора. Состоит он из двух полу­проводниковых переходов, расположенных вплотную друг к другу, и работа его частично опирается на те же принципы, которые мы только что описывали, говоря о полупроводниковом диоде — выпрямляющем переходе. Предположим, что мы изго­товили из германия небольшой брусочек, составленный из трех участков: p-область, n-область и опять p-область (фиг. 12.11,а). Такое сочетание именуется p—n—p-транзистором. Ведут себя эти переходы в транзисторе примерно так же, как описывалось в предыдущем параграфе. В частности, в каждом переходе должен наблюдаться перепад потенциала — падение потенци­ала из n-области в каждую из p-областей. Если внутренние свой­ства обеих p-областей одинаковы, то потенциал вдоль брусочка меняется так, как показано на фиг. 12.11,б.

Теперь представьте себе, что каждая из трех областей под­ключена к источнику внешнего напряжения (фиг. 12.12,а). Будем относить все напряжения к контакту, присоединенному к левой p-области, так что на этом контакте потенциал будет равен нулю.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "9. Квантовая механика II"

Книги похожие на "9. Квантовая механика II" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Ричард Фейнман

Ричард Фейнман - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Ричард Фейнман - 9. Квантовая механика II"

Отзывы читателей о книге "9. Квантовая механика II", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.