Ричард Фейнман - 9. Квантовая механика II
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "9. Квантовая механика II"
Описание и краткое содержание "9. Квантовая механика II" читать бесплатно онлайн.
Но если мы не в состоянии измерять разность потенциалов между двумя сторонами p—n-перехода, то откуда уверенность, что перепад потенциалов, показанный на фиг. 12.9, действительно существует? Ну, во-первых, можно осветить переход светом. Когда фотоны света поглощаются, они могут образовать пару электрон — дырка. В том сильном электрическом поле, которое существует в переходе (равном наклону потенциальной кривой на фиг. 12.9), дырку затянет в p-область, а электрон — в n-область. Если теперь обе стороны перехода подсоединить ко внешней цепи, эти добавочные заряды вызовут ток. Энергия света перейдет в электрическую энергию перехода. Солнечные батареи, которые генерируют для спутников электрическую мощность, действуют именно на этом принципе.
Обсуждая свойства полупроводникового перехода, мы предполагали, что дырки и электроны действуют более или менее независимо, если не считать того, что они как-то все же приходят в тепловое равновесие. Когда мы говорили о токе, получающемся при освещении перехода светом, то предполагали, что электрон или дырка, образующиеся в области перехода, прежде чем аннигилировать с носителем противоположной полярности, успеют попасть в само тело кристалла. В непосредственной близости от перехода, где плотности носителей обоих знаков примерно одинаковы, аннигиляция пар электрон — дырка (называемая часто «рекомбинацией») — очень важный эффект, и его следует принимать во внимание при детальном анализе полупроводникового перехода.
Мы предполагали, что дырка или электрон, образуемые в области перехода, имеют хороший шанс еще до рекомбинации попасть в основное тело кристалла. Типичное время, требующееся электрону или дырке для того, чтобы найти противоположного партнера и аннигилировать, для типичных полупроводниковых материалов колеблется между 10-3 и 10-7 сек. Кстати, это время много больше времени среднего свободного пробега t между столкновениями с узлами рассеяния в кристалле,— того времени, которым мы пользовались при анализе проводимости. В типичном p—n-переходе время, требуемое на то, чтобы смести в тело кристалла электрон или дырку, возникшую в области перехода, намного меньше времени рекомбинации. Поэтому большинство пар вливается во внешний ток.
§ 5. Выпрямление на полупроводниковом переходе
Теперь мы покажем, как получается, что p—n-переход действует как выпрямитель. Если мы к переходу приложим напряжение одного знака, то пойдет большой ток, если другого — тока почти не будет. А если к переходу приложить переменное напряжение, то ток пойдет только в одну сторону — он «выпрямится». Посмотрим еще раз, что получается в условиях равновесия, описанных кривыми фиг. 12.9. В материале p-типа имеется высокая концентрация Npположительных носителей. Эти носители повсюду диффундируют, и некоторое их количество каждую секунду приближается к переходу. Этот ток положительных носителей, достигающих перехода, пропорционален Np. Большая часть их, однако, разворачивается обратно, не будучи в состоянии взять высокий потенциальный холм у перехода, и только доля их проходит дальше. Имеется также ток положительных носителей, приближающихся к переходу с другой стороны. Этот ток тоже пропорционален плотности положительных носителей в n-области, но здесь плотность носителей намного ниже плотности в p-области. Когда положительные носители приближаются из n-области к переходу, они обнаруживают перед собой холм с отрицательным склоном и сходу соскальзывают под гору, на p-сторону перехода. Обозначим этот ток I0. В условиях равновесия токи в обе стороны одинаковы. Значит, можно ожидать, что будет выполняться следующее соотношение:
Вы замечаете, что оно на самом деле совпадает с (12.10). Мы просто вывели его другим способом.
Допустим, однако, что мы снизили напряжение на n-стороне перехода на величину DV — это можно сделать, приложив к переходу внешнюю разность потенциалов. Теперь разница в потенциалах по обе стороны потенциального холма уже не V, а V-DV. У тока положительных носителей из p-области в n-область теперь в показателе экспоненты будет стоять именно эта разность потенциалов. Обозначая этот ток через I1; имеем
Этот ток превосходит ток I0 в раз. Значит, между I1 и I0 существует следующая связь:
Ток из p-области при приложении внешнего напряжения DV растет по экспоненте. А ток положительных носителей из n-области остается постоянным, пока DV не слишком велико.
Достигая барьера, эти носители по-прежнему будут видеть перед собой идущий под гору потенциал и будут все скатываться в p-область. (Если DV больше естественной разности потенциалов V, положение может измениться, но что случается при таких высоких напряжениях, мы рассматривать не будем.) В итоге ток положительных носителей I, текущий через переход, будет определяться разницей токов в обе стороны:
Дырочный ток I течет в n-область. Там дырки диффундируют в самую глубь n-области и могут, вообще говоря, аннигилировать на основной массе отрицательных носителей электронов. Убыль электронов, теряемых при этой аннигиляции, восполняется током электронов из внешнего контакта материала n-типа.
Когда DV=0, то и ток в (12.14) равен нулю. Если DV положительна, ток с напряжением резко растет, а если DV отрицательна, знак тока меняется, но экспоненциальный член вскоре становится пренебрежимо малым, и отрицательный ток никогда не превышает I0 — величины, которая, по нашему предположению, очень мала. Этот обратный ток I0 ограничен той слабой плотностью, которой обладают неосновные носители в n-области перехода.
Если вы проведете в точности тот же анализ для тока отрицательных носителей, текущего через переход, сперва без внешней разности потенциалов, а после с небольшой приложенной извне разностью потенциалов DV, то для суммарного электронного тока вы опять получите уравнение, похожее на (12.14). Поскольку полный ток есть сумма токов носителей обоего рода, то (12.14) применимо и к полному току, если только отождествить I0 с максимальным током, который может течь при перемене знака напряжения.
Вольтамперная характеристика (12.14) показана на фиг. 12.10.
Фиг. 12.10. Зависимость тока через переход от приложенного к нему напряжения.
Она демонстрирует нам типичное поведение кристаллических диодов, подобных тем, которые применяются в современных вычислительных машинах. Нужно только заметить, что (12.14) справедливо лишь при невысоких напряжениях. При напряжениях, сравнимых с естественной внутренней разностью потенциалов V (или превышающих ее), в игру входят новые явления и ток уже не подчиняется столь простому уравнению.
Быть может, вы вспомните, что в точности такое же уравнение мы получили, говоря о «механическом выпрямителе» — храповике и собачке [см. гл. 46 (вып. 4)]. Мы получали те же уравнения, потому что лежащие в их основе физические процессы весьма схожи.
§ 6. Транзистор
Пожалуй, самым важным применением полупроводников является изобретение транзистора. Состоит он из двух полупроводниковых переходов, расположенных вплотную друг к другу, и работа его частично опирается на те же принципы, которые мы только что описывали, говоря о полупроводниковом диоде — выпрямляющем переходе. Предположим, что мы изготовили из германия небольшой брусочек, составленный из трех участков: p-область, n-область и опять p-область (фиг. 12.11,а). Такое сочетание именуется p—n—p-транзистором. Ведут себя эти переходы в транзисторе примерно так же, как описывалось в предыдущем параграфе. В частности, в каждом переходе должен наблюдаться перепад потенциала — падение потенциала из n-области в каждую из p-областей. Если внутренние свойства обеих p-областей одинаковы, то потенциал вдоль брусочка меняется так, как показано на фиг. 12.11,б.
Теперь представьте себе, что каждая из трех областей подключена к источнику внешнего напряжения (фиг. 12.12,а). Будем относить все напряжения к контакту, присоединенному к левой p-области, так что на этом контакте потенциал будет равен нулю.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "9. Квантовая механика II"
Книги похожие на "9. Квантовая механика II" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Ричард Фейнман - 9. Квантовая механика II"
Отзывы читателей о книге "9. Квантовая механика II", комментарии и мнения людей о произведении.