» » » » Рэймонд Курцвейл - Эволюция разума


Авторские права

Рэймонд Курцвейл - Эволюция разума

Здесь можно купить и скачать "Рэймонд Курцвейл - Эволюция разума" в формате fb2, epub, txt, doc, pdf. Жанр: Биология, издательство Эксмо, год 2015. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рэймонд Курцвейл - Эволюция разума
Рейтинг:
Название:
Эволюция разума
Издательство:
неизвестно
Жанр:
Год:
2015
ISBN:
978-5-699-81143-4
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Эволюция разума"

Описание и краткое содержание "Эволюция разума" читать бесплатно онлайн.



Центральная идея работ знаменитого Рэя Курцвейла — искусственный интеллект, который со временем будет властвовать во всех сферах жизни людей. В своей новой книге «Эволюция разума» Курцвейл раскрывает бесконечный потенциал возможностей в сфере обратного проектирования человеческого мозга.






Высокоупорядоченная структура решетки начальных связей нейронов новой коры (по данным исследований, проведенных Национальным институтом здоровья США).


Уже давно известно, что как минимум некоторые отделы новой коры построены по иерархическому принципу. Лучше всего исследован зрительный отдел коры, подразделяемый на зоны V1, V2 и MT (она же зона V5).

Еще одно изображение регулярных связей нейронов в новой коре.


При перемещении в более высокие отделы этой области коры («высокие» в смысле понятийной иерархии, а не в физическом смысле, поскольку новая кора по толщине всегда соответствует лишь одному распознающему модулю) происходит распознавание все более сложных (более абстрактных) понятий.

Структура решетки, обнаруженная в новой коре, удивительным образом напоминает структуру так называемой координатной коммутации, используемой в интегральных схемах и монтажных платах.


Зона V1 отвечает за самые примитивные формы, V2 может распознавать контуры, соответствие изображений, полученных от каждого глаза, пространственную ориентацию, а также является ли данный образ частью какого-то объекта или фоном[49]. Наивысшие зоны коры распознают такие понятия, как идентичность объектов и лиц и их движения. Также давно известно, что связь между этими иерархическими зонами осуществляется как снизу вверх, так и сверху вниз и что сигналы могут быть как возбуждающими, так и тормозящими. Нейрофизиолог из Массачусетского технологического института Томазо Поджо (род. в 1947 г.) активно занимался изучением зрительных отделов коры, и полученные им за последние 35 лет результаты были очень полезны для понимания иерархических принципов обучения и распознавания образов в «ранней» (находящейся на нижнем понятийном уровне) зрительной области коры[50].

Наши представления о нижних иерархических уровнях зрительной коры вполне соответствуют теории мысленного распознавания образов, о которой я говорил в предыдущей главе, а недавно удалось продемонстрировать иерархическую природу процессов далеко за пределами этих уровней новой коры. Профессор нейробиологии Техасского университета Даниель Дж. Феллман и его коллеги проследили «иерархическую организацию коры головного мозга… [в] 25 областях новой коры», в числе которых как зрительные зоны, так и участки высокого понятийного уровня, объединяющие образы, поступающие от нескольких органов чувств. Они обнаружили, что в соответствии с иерархическим строением коры обработка образов усложняется, затрагиваются все более обширные участки мозга и процесс занимает все более длительное время. И каждая проанализированная ими связь служит для проведения сигнала в обоих направлениях[51].

Недавние исследования позволили нам значительно расширить эти наблюдения за пределы зрительной коры и связанных с ней областей, принимающих сигналы от различных органов чувств. В 2007 г. профессор психологии Ури Хассон и его коллеги из Принстонского университета показали, что процессы, наблюдаемые в зрительной коре, имеют место и во многих других отделах коры: «Доказано, что нейроны зрительной коры имеют очень широкие рецептивные поля. В этом состоит основной принцип организации системы зрительного восприятия… Реальные события разворачиваются не только в пространственном, но и во временном измерении. Поэтому мы предполагаем, что иерархия, аналогичная иерархии пространственных рецептивных полей, должна существовать в различных отделах мозга и для реакций во временном измерении». Именно это они и обнаружили и пришли к заключению, что «существует иерархия прогрессивно увеличивающихся временных рецептивных полей, аналогичная известной иерархии пространственных рецептивных полей новой коры»[52].

Самым мощным аргументом в пользу универсального характера обработки информации в новой коре является доказательство пластичности этого процесса (не только обучаемость, но и взаимозаменяемость). Иными словами, один отдел мозга может выполнять работу других отделов, пользуясь общим для всей новой коры алгоритмом. Многочисленные нейрофизиологические исследования были посвящены идентификации участков новой коры, ответственных за обработку различных типов образов. Классический подход к исследованию данного вопроса состоит в проведении корреляций между повреждениями головного мозга (в результате травмы или инсульта) и потерей соответствующей функции мозга. Например, если выясняется, что в результате повреждения веретенообразной извилины человек перестает распознавать лица, но все еще способен узнавать людей по голосам и манере говорить, можно сделать вывод, что поврежденный участок связан с распознаванием лиц. При этом предполагается, что каждый такой отдел мозга предназначен для распознавания и обработки образов определенного типа. В результате отдельные физические участки мозга стали связывать с восприятием определенных типов образов, поскольку в норме именно в этих участках происходит обработка соответствующей информации. Однако выясняется, что при нарушении по какой-либо причине нормального потока информации эту функцию может взять на себя другой отдел новой коры.

Неврологам хорошо известна эта пластичность мозга, благодаря которой пациенты с повреждениями мозга в результате травмы или инсульта могут вернуть утерянные функции за счет других участков новой коры. Возможно, один из самых удивительных примеров пластичности мозга был продемонстрирован в 2011 г. американским нейрофизиологом Мариной Бедни и ее коллегами, которые изучали зрительную кору пациентов с врожденной слепотой. В соответствии с классическими представлениями, первичные уровни зрительной коры, такие как V1 и V2, воспринимают и обрабатывают самые примитивные образы (углы и линии), тогда как фронтальная кора (новый в эволюционном плане отдел мозга, заключенный в нашей необычайно развитой лобной части черепа) обрабатывает гораздо более сложные и тонкие речевые образы и другие абстрактные понятия. Однако Бедни и ее коллеги обнаружили следующее: «Считается, что левый лобный и височный отделы человеческого головного мозга предназначены для обработки речевых образов. Однако у слепых от рождения людей при решении некоторых речевых задач происходит активация зрительной коры. Мы показали, что эта активность зрительной коры на самом деле отражает обработку речевых образов. Мы обнаружили, что у людей с врожденной слепотой левая часть зрительной коры ведет себя аналогично классическим участкам, отвечающим за восприятие речи… Мы пришли к заключению, что отделы мозга, которые, как считалось, эволюционировали для восприятия зрительных образов, в результате раннего опыта могут участвовать в обработке речевых образов»[53].

Подумайте, что это означает. Получается, отделы новой коры, которые физически удалены друг от друга и, как считалось, отвечают за совершенно разные функции (восприятие примитивных зрительных образов и сложных речевых построений), фактически используют один и тот же алгоритм. Эти отделы, предназначенные для восприятия совершенно разных типов образов, могут заменять друг друга.

Нейрофизиолог Даниэль Фельдман из Университета Калифорнии в Беркли в 2009 г. опубликовал обширный обзор о том, что мы называем «механизмами синаптической пластичности новой коры», и привел доказательства подобной пластичности в разных отделах коры. Он пишет, что «пластичность позволяет мозгу узнавать и запоминать образы чувственного мира, совершенствовать движения… и восстанавливать функции после повреждений». Он добавляет, что эта пластичность достигается за счет «структурных изменений, включающих образование, удаление и морфологические перестройки кортикальных синапсов и дендритных шипиков»[54].

Ученые из Университета Калифорнии в Беркли недавно продемонстрировали еще один удивительный пример пластичности коры (и, следовательно, универсальности алгоритма функции новой коры). Они использовали имплантированные микроэлектроды для получения сигналов из участков моторной коры мыши, которые контролируют движение усов. Эксперимент был поставлен таким образом, что мыши получали вознаграждение, если активировали соответствующие нейроны в определенных ситуациях, но при этом не шевелили усами. Для получения награды мышам приходилось решать задачу, в обычных условиях не связанную с активацией нейронов лобной доли. Тем не менее мыши оказались способны решить задачу, в основном используя свои моторные нейроны, при этом отключив их от выполнения двигательной функции[55]. Это означает, что моторная кора, ответственная за координацию движений мышц, тоже использует стандартный алгоритм новой коры.

Однако по некоторым причинам опыт или знания, полученные с помощью новой области коры, заменившей поврежденную область, не всегда столь же полноценны, как исходные. Во-первых, обучение какому-то навыку и его совершенствование продолжаются всю жизнь, поэтому переобучение за счет подключения другого участка новой коры не может немедленно привести к тем же результатам. Но еще важнее, что новый участок коры не просто находился в ожидании этой своей новой функции. Он участвовал в реализации каких-то других жизненно важных задач и поэтому вынужден отказаться от какой-то содержащейся в нем информации, чтобы компенсировать функцию поврежденного участка. Прежде всего, он уничтожает некоторые избыточные копии хранящихся в нем образов, что в какой-то степени ухудшает его существующие способности, но при этом не освобождает столько же пространства, сколько раньше занимали выучиваемые заново образы.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Эволюция разума"

Книги похожие на "Эволюция разума" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Рэймонд Курцвейл

Рэймонд Курцвейл - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Рэймонд Курцвейл - Эволюция разума"

Отзывы читателей о книге "Эволюция разума", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.