» » » » Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]


Авторские права

Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]

Здесь можно скачать бесплатно "Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]" в формате fb2, epub, txt, doc, pdf. Жанр: Радиотехника, издательство "Мир", год 1993. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]
Рейтинг:
Название:
Искусство схемотехники. Том 1 [Изд.4-е]
Издательство:
"Мир"
Год:
1993
ISBN:
5-03-002337-2 (русск.); 5-03-002336-4; 0-521-37095-7 (англ.)
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Искусство схемотехники. Том 1 [Изд.4-е]"

Описание и краткое содержание "Искусство схемотехники. Том 1 [Изд.4-е]" читать бесплатно онлайн.



Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем.

На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах.

Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.






Воспользуемся обобщенным законом Ома: Ζ = —j/ωC. Следовательно, ток можно определить следующим образом: I = U/Z.

Фаза напряжения произвольна, допустим U = А, т. е. U(t) = A·cos ωt, где амплитуда А = 110√2 ~= 156 В, тогда I = jωCA ~= 0,059·sin ωt. Искомый ток имеет амплитуду 59 мА (эффективное значение составляет 41,5 мА) и опережает напряжение по фазе на 90°. Результат соответствует полученным ранее выводам. Отметим, что если бы нас интересовала только амплитуда тока, то можно было бы не прибегать к комплексным числам: если А = В/С, то А = В/С, где А, В, С — амплитуды комплексных чисел. То же самое справедливо и для произведения (см. упражнение 1.17). Для нашего случая

I = U/Z = ωCU.

Иногда этот прием очень полезен.

Как ни странно, конденсатор в нашем примере мощность не рассеивает. Его подключение к сети не приводит к увеличению показаний счетчика электроэнергии. Разгадку этой «тайны» вы узнаете, прочитав следующий раздел. А затем мы продолжим анализ схем, содержащих резисторы и конденсаторы, с помощью обобщенного закона Ома.

Упражнение 1.17. Докажите, что если А = ВС, то А = ВС, где А, В, С — амплитуды комплексных чисел. Подсказка: представьте каждое комплексное число в форме А = Аеjθ.

Мощность в реактивных схемах. Мгновенное значение мощности, потребляемой любым элементом схемы, определяется произведением Ρ = UI. Однако в реактивных схемах, где напряжение U и ток I связаны между собой не простой пропорциональной зависимостью, просто перемножить их нельзя. Дело в том, что могут возникать странные явления, например, знак произведения может изменяться в течение одного периода сигнала переменного тока. Такой пример показан на рис. 1.49.



Рис. 1.49. При использовании синусоидального сигнала ток через конденсатор опережает напряжение по фазе на 90°.


На интервалах А и С на конденсатор поступает некоторая мощность (правда, скорость ее изменения переменна), и благодаря этому он заряжается: накапливаемая конденсатором энергия увеличивается (мощность — это скорость изменения энергии). На интервалах В и D потребляемая мощность имеет отрицательный знак — конденсатор разряжается. Средняя мощность за период для нашего примера равна нулю; этим свойством обладают все реактивные элементы (индуктивности, конденсаторы и всевозможные их комбинации). Если вы знакомы с интегралами от тригонометрических функций, то следующее упражнение поможет вам доказать это свойство.

Упражнение 1.18. (дополнительное). Докажите, что схема в среднем за полный период не потребляет мощности, если протекающий через нее ток сдвинут по фазе относительно питающего напряжения на 90 °.


Как определить среднюю потребляемую мощность для произвольной схемы?

В общем случае можно просуммировать произведения U·I и разделить сумму на длительность истекшего интервала времени. Иными словами


где Т — полный период времени.

Практически так мощность почти никогда не определяют. Нетрудно доказать, что средняя мощность определяется следующим выражением:

P = Re(U*I) = Re(UI*),

где U и I — эффективные комплексные значения напряжения и тока.

Рассмотрим пример. Допустим, что в предыдущей схеме конденсатор питается синусоидальным напряжением, эффективное значение которого равно 1 В. Для простоты будем выполнять все преобразования с эффективными значениями.

Итак: U = 1, I = U/(j/ωC), Ρ = Re[UI*] = Re(jωC) = 0. Мы получили, что средняя мощность, как и утверждалось, равна нулю.

А теперь рассмотрим схему, показанную на рис. 1.50.



Рис. 1.50.


Выполним ряд преобразований:

Z = R — j/ωC,

U = U0,

I = U/Z = U0/[R — j/ωC] = U0/[R + (j/ωC)]/[R2 + (1/ω2C2)],

Ρ = Re(UI*) = U0R/[R2 + (1/ω2C2)].

В третьей строке преобразований при определении тока I мы умножили числитель и знаменатель на комплексное число, сопряженное знаменателю, для того чтобы получить в знаменателе действительное число. Полученная величина меньше, чем произведение амплитуд U и I; ее отношение к этому произведению называют коэффициентом мощности:



Коэффициент мощности — это косинус угла, определяющего сдвиг фаз напряжения и тока, он лежит в диапазоне от 0 (для реактивной схемы) до 1 (для резистивной схемы). Если коэффициент мощности меньше 1, то это значит, что в схеме присутствует реактивный элемент.

Упражнение 1.19. Докажите, что вся средняя мощность предыдущей схемы рассеивается на резисторе. Для того, чтобы решить эту задачу, нужно определить величину отношения UR2/R. Определите, чему будет равна эта мощность в ваттах, если цепь, состоящая из последовательно соединенных конденсатора емкостью 1 мкФ и резистора сопротивлением 1 кОм, подключена к силовой сети с эффективным напряжением 110 В (частота 60 Гц).


Коэффициент мощности играет немаловажную роль в распределении больших мощностей, так как реактивные токи не передают нагрузке никакой полезной мощности, зато вызывают нагрев в сопротивлениях проводов генераторов и трансформаторов (температура нагрева пропорциональна I2R). Бытовые потребители электроэнергии платят только за «действительную» потребляемую мощность [Re(UI*)], а промышленные потребители - с учетом коэффициента мощности. Вот почему большие предприятия для погашения влияния индуктивных реактивных сопротивлений производственного оборудования (моторов) сооружают специальные конденсаторные блоки.

Упражнение 1.20. Покажите, что последовательное подключение конденсатора емкостью С = 1/ω2L к последовательной RL-цепи делает коэффициент мощности этой цепи равным единице. Затем рассмотрите параллельную цепь и параллельно подключенный конденсатор.


Делители напряжения: обобщение. Простейший делитель напряжения (рис. 1.5) состоит из пары последовательно соединенных резисторов. Входное напряжение измеряется в верхней точке относительно земли, а выходное-в точке соединения резисторов относительно земли. От простейшего резистивного делителя перейдем к более общей схеме делителя, если один или оба резистора заменим на конденсатор или индуктивность, как, на рис. 1.51 (в более сложной схеме присутствуют и R, и L, и С).



Рис. 1.51. Обобщенная схема делителя напряжения: пара электрических цепей с произвольным импедансом.


Вообще говоря, в таком делителе отношение Uвых/Uвх не является постоянной величиной, а зависит от частоты. Анализ схемы выполняется без всяких хитроумных приемов:

IUвх/Zполн,

Zполн = Z1+ Z2,

UвыхZ2 = Uвх[Z2/(Z1+ Z2)].

Не будем сосредоточивать внимание на полученном результате, рассмотрим лучше некоторые простые, но очень важные примеры.


1.19. RС-фильтры

Благодаря тому что импеданс конденсатора, равный ZС = —j/ωС, зависит от частоты, с помощью конденсаторов и резисторов можно строить частотно-зависимые делители напряжения, которые будут пропускать только сигналы нужной частоты, а все остальные подавлять. В этом разделе вы познакомитесь с примерами простейших RС-фильтров, к которым мы будем неоднократно обращаться в дальнейшем. В гл. 5 и приложении 3 описаны более сложные фильтры.

Фильтры высоких частот. На рис. 1.52 показан делитель напряжения, состоящий из конденсатора и резистора.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Искусство схемотехники. Том 1 [Изд.4-е]"

Книги похожие на "Искусство схемотехники. Том 1 [Изд.4-е]" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Пауль Хоровиц

Пауль Хоровиц - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]"

Отзывы читателей о книге "Искусство схемотехники. Том 1 [Изд.4-е]", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.