» » » » Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]


Авторские права

Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]

Здесь можно скачать бесплатно "Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]" в формате fb2, epub, txt, doc, pdf. Жанр: Радиотехника, издательство "Мир", год 1993. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]
Рейтинг:
Название:
Искусство схемотехники. Том 2 [Изд.4-е]
Издательство:
"Мир"
Год:
1993
ISBN:
5-03-002338-0 (русск.); 5-03-002336-4; 0-521-37095-7 (англ.)
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Искусство схемотехники. Том 2 [Изд.4-е]"

Описание и краткое содержание "Искусство схемотехники. Том 2 [Изд.4-е]" читать бесплатно онлайн.



Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах.

Том 2 содержит сведения о прецизионных схемах и малошумящей аппаратуре, о цифровых схемах, о преобразователях информации, мини- и микроЭВМ и микропроцессорах.

Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.






Рис. 8.100.


(15) Теперь по тому же принципу сконструируйте умножитель 4x4 с помощью 4-разрядных полных сумматоров (74НС83) и 16 2-входовых вентилей.

Глава 9

СОПРЯЖЕНИЕ ЦИФРОВЫХ И АНАЛОГОВЫХ СИГНАЛОВ

Перевод Л.В.Поспелова


«Перемалывание чисел» само по себе является, несомненно, чрезвычайно важным применением цифровой электроники, но ее действительные возможности открываются при использовании цифровых методов для обработки аналоговых (линейных) сигналов и процессов. Эту главу мы начнем с краткой хронологии «взлетов и падений» семейств цифровой логики и рассмотрим входные и выходные характеристики «выживших» семейств ТТЛ-КМОП-логики для того, чтобы понять, как осуществить сопряжение логических семейств друг с другом и с устройствами цифрового ввода (переключателями, клавиатурой, компараторами и т. п.) и вывода (индикаторами, реле и т. п.). Мы рассмотрим также n-канальные логические элементы на МОП-транзисторах, поскольку они находят широкое применение при реализации функциональных БИС. Затем коснемся важной темы ввода и вывода цифровых сигналов на платы и внешние приборы, а также передачи цифровых сигналов по кабелям, после чего обсудим методы взаимного преобразования цифровых и аналоговых сигналов. Наконец, после того как читатель усвоит эти методы, мы рассмотрим несколько примеров применения, в которых сочетание аналоговых и цифровых средств обеспечивает эффективное решение разнообразных задач.

Сопряжение логических КМОП- и ТТЛ-элементов

9.01. Хронология логических семейств

В начале 1960-х гг. во времена, которые можно назвать доисторическими, предприимчивые люди, не пожелавшие создавать свои логические схемы на дискретных транзисторах, самоотверженно бились над резисторно-транзисторной логикой (РТЛ), простым семейством логических элементов, разработанным на фирме Fairchild и характеризующимся небольшим коэффициентом разветвления по выходу и низкой помехоустойчивостью. Рис. 9.1 иллюстрирует возникшие в то время проблемы, в частности, логический порог, превышающий уровень земли на одно напряжение Uбэ, и крайне маленький коэффициент разветвления по выходу (в некоторых случаях один выход мог питать только один вход!) были обусловлены пассивной выходной схемой и низкоомной токоотводящей нагрузкой. Это были времена малой интеграции и наиболее сложным элементом, который можно было реализовать, был сдвоенный триггер, работающий на частоте 4 МГц. Но мы смело строили свои схемы на РТЛ, иногда они сбивались особенно, когда в той же комнате включали паяльник.

Похоронный звон по РТЛ прозвучал несколькими годами позже, когда появилась диодно-транзисторная логика (ДТЛ) фирмы Signetics и вскоре вслед за ней универсальная быстродействующая логика SUHL фирмы Sylvania, которая теперь называется транзисторно-транзисторной логикой (ТТЛ). Фирма Signetics выпускала распространенную смесь из двух серий, названную DCL Utilogic серии 8000 («Логические схемы по выбору проектировщика»). ТТЛ быстро прижилась особенно в «системе счисления» «74хх», автором которой была фирма Texas Instruments.

В этих семействах были применены входы, поставляющие ток, с логическим порогом в 2 напряжения Uбэ и и (как правило) двухтактные каскадные выходы (рис. 9.1).








Рис. 9.1. Упрощенные схемы элементов различных логических семейств.


Семейства ДТЛ и ТТЛ открыли эру положительной 5-вольтовой логики (РТЛ была логикой +3,6 В) и предлагали скорость, соответствующую 25 МГц, а коэффициент разветвления по выходу 10, т. е. один выход мог работать на 10 входов. Разработчики не могли нарадоваться скорости, надежности и сложным функциям (например, счетчику по модулю 10) этих семейств. Казалось, что больше и мечтать не о чем; ТТЛ — это на веки вечные.

Однако людям свойственно стремление к совершенствованию. Им потребовалась большая скорость, меньшая мощность потребления. Казалось бы, вскоре они получили и то и другое. В области высокого быстродействия скоростные ТТЛ-схемы (серии 74Н) позволили увеличить скорость почти вдвое, правда, за удвоенную мощность! (это выдающееся достижение было сделано путем уменьшения вдвое величин всех резисторов). Другое семейство — эмиттерно-связанная логика (ЭСЛ) — представило настоящую скорость (30 МГц в первоначальной версии) за счет использования отрицательного источника питания и более близких друг к другу логических уровней (—0,98 и —1,75 В); элементы семейства потребляли уйму мощности и едва втиснулись в малый уровень интеграции. В области низкой мощности появились маломощные ТТЛ-элементы (серия 74L) с 1/4 скорости при 1/10 мощности, соответствующих «стандартной» ТТЛ серии 7400. При поддержке фирмы RCA было разработано первое семейство логических элементов на МОП-транзисторах, КМОП-логика серии 4000. Эти элементы обладали нулевой мощностью потребления в состоянии покоя и широким диапазоном напряжения питания (от +3 до +12 В). Выходы имели размах, равный напряжению питания, а входы не «оттягивали» ток. Это были хорошие новости, но были и плохие - скорость (1 МГц при питании 10 В) и цена (20 долл. за корпус с четырьмя вентилями). Несмотря на цену на микромощных КМОП-элементах выросло целое поколение разработчиков устройств с батарейным питанием, просто не было другого выбора. Работая с легко «ранимыми» входами, разработчики поняли истинное значение статического электричества.

Такова была ситуация на начало 1970-х гг.,-две главные линии биполярной логики (ТТЛ и ЭСЛ) и необычная КМОП-логика. Варианты ТТЛ были по природе своей совместимы друг с другом, за исключением того, что ТТЛ-элементы серии 74L имели слабый выходной узел (отвод тока 3,6 мА) и могли питать только две стандартных (серии 74) нагрузки ТТЛ (чьи входы требовали 1,6 мА на низком уровне). Среди большинства семейств почти не было совместимости (хотя погруженные ТТЛ-элементы могли питать КМОП-элементы, а 5-вольтовые КМОП- только одну ТТЛ-нагрузку серии 74L).

В течение 1970-х гг. ситуация постоянно улучшалась практически на всех направлениях. От ТТЛ отпачковались ненасыщенные «фиксируемые диодами Шоттки» семейства (см. разд. 13.23): сначала серия 74S, которая благодаря утроенной скорости при удвоенной мощности вытеснила серию 74Н, и затем 74LS (L — low, S — Schottky, маломощная Шоттки), которая слегка улучшив скорость при 1/5 мощности вытеснила ТТЛ серии 74. Жизнь с 74LS и 74S была приятной; затем подоспела фирма Fairchild со своей серией 74F (F — FAST: Fairchild Advanced Schottky TTL — усовершенствованная ТТЛ с диодами Шоттки фирмы Fairchild), которая была быстрее на 50 %, чем 74S, при 1/3 мощности; кроме того, были и другие улучшения, так что проектирование схем на этих элементах стало сплошным удовольствием. Фирма Texas Instruments (автор многих линий 14хх) выпустила пару улучшенных семейств Шоттки-логики: 74AS (улучшенная Шоттки-логика) и 74ALS («улучшенная маломощная Шоттки»). Предполагалось, что первое семейство заменит 74S, а второе - 74LS. Все эти ТТЛ-семейства имели одинаковые логические уровни и добротную схему формирования выхода, так что их можно было сочетать в одной схеме. Используя табл. 9.1 и рис. 9.2, можно сравнить скорости и мощности этих семейств.



Рис. 9.2. Зависимость скорости от мощности для различных логических семейств.


Между тем серия 4000 КМОП эволюционировала в улучшенную серию 4000 В с более широким диапазоном напряжения питания (от 3 до 18 В), лучшей защитой входов и более высокой скоростью (3,5 МГц при 5 В). По существу, это та же серия 74S с функциями и выводами семейства 74, которая воспользовалась потрясающим успехом биполярной логики семейства 74. ЭСЛ пустила ростки в виде ECLII, ECLIII, ECL 10,000 и ECL 100,000, обладающие скоростью до 500 МГц.

Итак, ситуация в 1980 г. была следующей. Большинство схем было выполнено на серии 74LS в сочетании с 74F (или 74AS), если требовалась более высокая скорость. Та же самая ТТЛ использовалась как своего рода клей для связи микропроцессорных n-МОП-схем, чьи входы и выходы были совместимы с ТТЛ. Микромощные устройства всегда были сделаны с использованием КМОП-серий 4000 В или 74С, эквивалентными и совместимыми друг с другом. Для устройств с самой высокой скоростью (100÷500 МГц) использовалась ЭСЛ. Совместное использование семейств было не столь уж частым явлением, исключение составляли редкие сочетания КМОП и ТТЛ или сопряжение ТТЛ с быстродействующими ЭСЛ-схемами.

В 1980-е гг. произошло замечательное событие - разработка КМОП-логики со скоростью и выходными параметрами, соответствующими ТТЛ. Сначала появились элементы серии 74НС («высокоскоростная КМОП-логика») с такой же скоростью как 74LS и, разумеется, с нулевым током покоя и затем серия 74АС («улучшенная КМОП-логика») с такой же скоростью как 74F или 74AS. Обладая размахом выходного сигнала, равным напряжению питания, и входным порогом, равным половине напряжения источника питания, эта логика сочетает лучшие свойства предшествующих ТТЛ- и КМОП-логики и постепенно должна вытеснить биполярную ТТЛ. Вместе с тем имеется некоторая несовместимость — логический «высокий» уровень выходного сигнала ТТЛ- и n-МОП-логики (мин. 2,4 В) не достаточен для запуска входа НС и АС. Поскольку, по-видимому, существует Такой период времени, когда вам необходимо использовать некоторые из старых семейств биполярной ТТЛ- или n-МОП-логики, каждое семейство КМОП-логики имеет вариант с более низким входным порогом. Такие семейства имеют наименование 74НСТ и 74АСТ («быстродействующая КМОП-логика с ТТЛ-порогом»). Однако не пытайтесь использовать их везде, где только можно, ведь элементы с КМОП-порогом обладают более высокой помехоустойчивостью и представляют собой семейства по выбору проектировщика. К тому же в 80-е гг. БИС и СБИС постепенно переключались с n-МОП-технологии на КМОП (с вытекающими отсюда низкой мощностью и КМОП-совместимостью), одновременно увеличивая скорость и сложность. И наконец, на вершине быстродействия — элементы на GaAs (арсенида галлия), обеспечивающие скорость в несколько гигагерц.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Искусство схемотехники. Том 2 [Изд.4-е]"

Книги похожие на "Искусство схемотехники. Том 2 [Изд.4-е]" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Пауль Хоровиц

Пауль Хоровиц - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]"

Отзывы читателей о книге "Искусство схемотехники. Том 2 [Изд.4-е]", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.