» » » » Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]


Авторские права

Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]

Здесь можно скачать бесплатно "Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]" в формате fb2, epub, txt, doc, pdf. Жанр: Радиотехника, издательство "Мир", год 1993. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]
Рейтинг:
Название:
Искусство схемотехники. Том 2 [Изд.4-е]
Издательство:
"Мир"
Год:
1993
ISBN:
5-03-002338-0 (русск.); 5-03-002336-4; 0-521-37095-7 (англ.)
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Искусство схемотехники. Том 2 [Изд.4-е]"

Описание и краткое содержание "Искусство схемотехники. Том 2 [Изд.4-е]" читать бесплатно онлайн.



Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах.

Том 2 содержит сведения о прецизионных схемах и малошумящей аппаратуре, о цифровых схемах, о преобразователях информации, мини- и микроЭВМ и микропроцессорах.

Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.






С помощью карт Карно можно построить логику, чтобы выполнять достаточно сложные функции, такие, как, например, двоичное сложение и сравнение величин, контроль по паритету, мультиплексирование (выбор одного из нескольких входов, который определяется двоичным адресом) и т. п. В реальности сложные функции, которые используются наиболее часто, реализуются в виде функциональных ИМС средней степени интеграции (до 100 вентилей в корпусе). Хотя в состав многих из этих СИС входят триггеры, которые мы скоро будем рассматривать, большинство из них выполняют чисто комбинационные функции и состоят целиком из одних вентилей. Давайте посмотрим, «какие звери населяют зоопарк, именуемый комбинационные интегральные схемы средней степени интеграции.»

Счетверенная 2-входовая схема выборки. Весьма полезным устройством является счетверенная 2-входовая схема выборки. Она фактически представляет собой 4-полюсный двухпозиционный переключатель логических сигналов. Основная идея такого переключателя иллюстрируется рис. 8.31.



Рис. 8.31. Счетверенный 2-входовый селектор.


Когда вход ВЫБОР (SELECT-SEL на рисунке) имеет низкий уровень, сигналы на выходах Q поступают с соответствующих входов А, при высоком уровне на входе ВЫБОР — со входов В. Когда высокий уровень действует на входе РАЗРЕШЕНИЕ (ENABLE-E на рисунке), все выходы устройства принудительно устанавливаются в состояние низкого уровня. Несколько позже мы рассмотрим эту важную идею более подробно, а сейчас приведем лишь таблицу истинности, в которой X означает, что состояние данного входа не имеет значения, В — высокий уровень, Η — низкий уровень.



Схема на рис. 8.31 и ее таблица истинности соответствуют схеме `157. Та же самая функция реализуется также с инверсным выходом (`158) и с выходом на 3 состояния (прямые выходы; `257; инверсные: `258).

Упражнение 8.15. Покажите, как с помощью вентилей И-ИЛИ-НЕ построить 2-входовую схему выборки.


Хотя в некоторых случаях функцию выборки можно реализовать с помощью механического переключателя, тем не менее по ряду причин предпочтительнее использовать вентили. Вентильная схема обладает следующими преимуществами: а) она дешевле; б) коммутация всех каналов производится быстро и одновременно; в) с помощью логических сигналов, сформированных в устройстве, можно производить переключение практически мгновенно; г) даже тогда, когда управление выборкой осуществляется от переключателя, расположенного на передней панели устройства, для того чтобы избежать воздействия помехи и снижений уровней за счет влияния емкостей, логические сигналы лучше не пропускать через кабели и переключатели. Так как избираемый вентиль отпирается уровнем постоянного напряжения, логические сигналы управления могут быть взяты с той же платы, на которой он расположен. Это позволяет сократить внешние связи (достаточно одной линии с нагрузкой, коммутируемой на землю с помощью однополюсного тумблера). Такой способ управления логической схемой с помощью внешних уровней постоянного напряжения называют «холодной коммутацией». Он оказывается более предпочтительным, чем непосредственное управление сигналами от ключей, потенциометров и т. п. Кроме прочих преимуществ холодная коммутация позволяет вести управляющие линии, шунтированные конденсаторами, подавляя тем самым взаимные наводки, в то время как сигнальные линии в общем случае шунтировать конденсаторами нельзя. Некоторые примеры холодной коммутации нам еще встретятся в дальнейшем.

Передающие вентили. Как уже указывалось в разд. 3.11 и 3.12, с помощью элементов КМОП можно построить «передающий вентиль». Это — два параллельно включенных комплементарных ключа на полевых МОП-транзисторах, через которые входной (аналоговый) сигнал, лежащий в пределах от 0 до UСС, может либо непосредственно подаваться на выход через низкое сопротивление (несколько сотен омов), либо отрываться (выходное сопротивление фактически равно бесконечности). Как вы, наверное, помните, такие устройства являются двунаправленными и для них не имеет значения, какой из выходов используется в качестве входа, а какой в качестве выхода.

Передающие вентили прекрасно работают с цифровыми уровнями КМОП и широко применяются в КМОП-схемах. На рис. 8.32 показана структурная схема счетверенного двухстороннего КМОП-ключа типа 4066. Каждый ключ имеет индивидуальный управляющий вход, высокий уровень на котором замыкает ключ, а низкий — размыкает.



Рис. 8.32. Счетверенный двусторонний ключ.


Отметим, что передающие вентили являются просто ключами, и поэтому не обладают способностью к разветвлению по выходу, т. е. они просто пропускают входной логический уровень, не обеспечивая дополнительную нагрузочную способность без дополнительной возможности усиления. С помощью передающих вентилей можно построить схемы выборки на 2 и более входов для цифровых уровней КМОП и аналоговых сигналов. Связку передающих вентилей можно использовать для того, чтобы производить выбор одного из нескольких входов (вырабатывая управляющие сигналы с помощью дешифратора, как будет показано ниже).

Эта логическая функция настолько широко используется, что получила официальное название «мультиплексора», который будет рассмотрен в следующем разделе.

Упражнение 8.16. Покажите, как с помощью передающих вентилей построить схему выборки на два входа. Здесь нужно использовать инвертор.


Мультиплексоры. Вентиль выборки на два входа известен также под названием 2-входового мультиплексора. Промышленностью выпускаются также мультиплексоры на 4, 8 и 16 входов (устройства на 4 входа выпускаются сдвоенными, т. е. по 2 в одном корпусе). Двоичный адрес служит для выбора входа, сигнал с которого должен поступать на выход. Например, мультиплексор, имеющий 8 информационных входов, использует для адресации к ним 3-разрядный адресный вход. Это показано на рис. 8.33, где представлен цифровой мультиплексор типа `151.



Рис. 8.33. 8-входовый мультиплексор.


Он имеет стробирующий (или разрешающий) вход Е, работающий в отрицательной логике, а также прямой и инверсный выходы. Если устройство закрыто (на входе Ε действует высокий уровень), выход Q будет иметь низкий уровень, a Q' — высокий независимо от состояния адресных и информационных входов.

В семействе КМОП имеются два типа мультиплексоров. Первый применяется только для работы с цифровыми сигналами, имеет входной порог и регенерирует на выходе «чистые» уровни, которые соответствуют входному состоянию. Таким же образом работают все функциональные элементы ТТЛ. Примером является микросхема `153 — ТТЛ-мультиплексор. К другому типу устройств относятся аналоговые и двунаправленные КМОП мультиплексоры, которые фактически представляют собой набор передающих вентилей, КМОП-мультиплексоры 4051 и 4053 работают таким образом (помните, что логика, выполненная из передающих вентилей, не может разветвляться). Так как передающие вентили являются двунаправленными, эти мультиплексоры могут использоваться в качестве «демультиплексоров или дешифраторов», которые мы рассмотрим в следующем разделе.

Упражнение 8.17. Покажите, как построить мультиплексор на 4 входа, используя а) обычные вентили, б) вентили с тремя состояниями и в) передающие вентили. При каких обстоятельствах будет предпочтительным вариант в)?


Иногда при разработке логических устройств может оказаться, что потребуется производить набор из большего числа входов, чем имеются в мультиплексоре. Этот вопрос относится к общей задаче расширения микросхем, которое заключается в использовании нескольких микросхем с небольшими индивидуальными возможностями, и применяется для построения дешифраторов, памяти, регистров сдвига, арифметически-логических и других устройств. Как видно из рис. 8.34, расширение выполняется очень просто. Здесь показано, как имея два мультиплексора на 8 входов 74LS51 построить мультиплексор на 16 входов.



Рис. 8.34. Наращивание мультиплексора.


Конечно, в схемах имеется дополнительный адресный бит, который вы используете для выбора одного устройства или другого. На невыбранном мультиплексоре `151 выход Q поддерживается на низком уровне, что позволяет произвести объединение через вентиль ИЛИ. Если выходы имеют три состояния, то расширение производится еще проще: для этого достаточно непосредственно объединить выходы.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Искусство схемотехники. Том 2 [Изд.4-е]"

Книги похожие на "Искусство схемотехники. Том 2 [Изд.4-е]" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Пауль Хоровиц

Пауль Хоровиц - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]"

Отзывы читателей о книге "Искусство схемотехники. Том 2 [Изд.4-е]", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.