» » » » Виктор Борисов - Юный радиолюбитель [7-изд]


Авторские права

Виктор Борисов - Юный радиолюбитель [7-изд]

Здесь можно скачать бесплатно "Виктор Борисов - Юный радиолюбитель [7-изд]" в формате fb2, epub, txt, doc, pdf. Жанр: Радиотехника, издательство "Радио и связь", год 1985. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Виктор Борисов - Юный радиолюбитель [7-изд]
Рейтинг:
Название:
Юный радиолюбитель [7-изд]
Издательство:
"Радио и связь"
Год:
1985
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Юный радиолюбитель [7-изд]"

Описание и краткое содержание "Юный радиолюбитель [7-изд]" читать бесплатно онлайн.



В форме популярных бесед книга знакомит юного читателя с историей и развитием радио, с элементарной электро- и радиотехникой, электроникой. Она содержит более пятидесяти описаний различных по сложности любительских радиовещательных приемников и усилителей звуковой частоты с питанием от источников постоянного и переменного тока, измерительных пробников и приборов, автоматически действующих электронных устройств, простых электро- цветомузыкальных инструментов, радиотехнических игрушек и аттракционов, аппаратуры для телеуправления моделями, для радиоспорта. Даются справочные материалы. Шестое издание книги вышло в 1979 г. Материал настоящего издания значительно обновлен.

Для начинающих радиолюбителей.






Однако, если качели все время подталкивать в такт с их колебаниями и тем самым пополнять потери энергии, расходуемой на преодоление различных тормозящих сил, колебания станут незатухающими. Это уже не свободные, а вынужденные колебания. Они будут длиться до тех пор, пока не перестанет действовать внешняя подталкивающая сила.

Я вспомнил здесь о качелях потому, что физические явления, происходящие в такой механической колебательной системе, очень схожи с явлениями в электрическом колебательном контуре. Чтобы в контуре возникли электрические колебания, ему надо сообщить энергию, которая «подтолкнула» бы в нем электроны. Это можно сделать, зарядив, например, его конденсатор.

Разорвем выключателем S колебательный контур и подключим к обкладкам его конденсатора источник постоянного тока, как показано на рис. 40 слева. Конденсатор зарядится до напряжения батареи GB. Затем отключим батарею от конденсатора, а контур замкнем выключателем S. Явления, которые теперь будут происходить в контуре, изображены графически на рис. 40 справа.

В момент замыкания контура выключателем верхняя обкладка конденсатора имеет положительный заряд, а нижняя — отрицательный (рис. 40, а). В это время (точка 0 на графике) тока в контуре нет, а вся энергия, накопленная конденсатором, сосредоточена в электрическом поле его диэлектрика. При замыкании конденсатора на катушку конденсатор начнет разряжаться. В катушке появляется ток, а вокруг ее витков — магнитное поле. К моменту полной разрядки конденсатора (рис. 40, б), отмеченному на графике цифрой 1, когда напряжение на его обкладках уменьшится до нуля, ток в катушке и энергия магнитного поля достигнут наибольших значений. Казалось бы, что в этот момент ток в контуре должен был прекратиться. Этого, однако, не произойдет, так как от действия ЭДС самоиндукции, стремящейся поддержать ток, движение электронов в контуре будет продолжаться. Но только до тех пор, пока не израсходуется вся энергия магнитного поля. В катушке в это время будет течь убывающий по значению, но первоначального направления индуцированный ток.

К моменту времени, отмеченному на графике цифрой 2, когда энергия магнитного поля израсходуется, конденсатор вновь окажется заряженным, только теперь на его нижней обкладке будет положительный заряд, а на верхней — отрицательный (рис. 40, в). Теперь электроны начнут обратное движение в направлении от верхней обкладки через катушку к нижней обкладке конденсатора. К моменту 3 (рис. 40, г) конденсатор разрядится, а магнитное поле катушки достигнет наибольшего значения. И опять ЭДС самоиндукции «погонит» по проводу катушки электроны, перезаряжая тем самым конденсатор.

В момент времени 4 (рис. 40, д) состояние электронов в контур будет таким же, как в первоначальный момент 0. Закончилось одно полное колебание.

Естественно, что заряженный конденсатор вновь будет разряжаться на катушку, перезаряжаться и произойдут второе, за ним третье, четвертое и т. д. колебания. Другими словами, в контуре возникнет переменный электрический ток, электрические колебания. Но этот колебательный процесс в контуре не бесконечен. Он продолжается до тех пор, пока вся энергия, полученная конденсатором от батареи, не израсходуется на преодоление сопротивления провода катушки контура. Колебания в контуре свободные и, следовательно, затухающие.



Рис. 40. Электрические колебания в контуре


Какова частота таких колебаний электронов в контуре? Чтобы подробнее разобраться в этом вопросе, советую провести такой опыт с простейшим маятником. Подвесь на нитке длиной 100 см шарик, слепленный из пластилина, или иной груз массой в 20–40 г (на рис. 41 длина маятника обозначена латинской буквой L).



Рис. 41. Графики колебаний простейшего маятника


Выведи маятник из положения равновесия и, пользуясь часами с секундной стрелкой, сосчитай, сколько полных колебаний он делает за 1 мин. Примерно 30. Следовательно, частота колебаний этого маятника равна 0,5 Гц, а период 2 с. За период потенциальная энергия маятника дважды переходит в кинетическую, а кинетическая в потенциальную. Укороти нить наполовину. Частота маятника увеличится примерно в полтора раза и во столько же раз уменьшится период колебаний.

Этот опыт позволяет сделать вывод: с уменьшением длины маятника частота его собственных колебаний увеличивается, а период пропорционально уменьшается.

Изменяя длину подвески маятника, добейся, чтобы его частота колебаний равнялась 1 Гц. Это должно быть при длине нити около 25 см. При этом период колебаний маятника будет равен 1 с. Каким бы ты не пытался создать первоначальный размах маятника, частота его колебаний будет неизменной. Но стоит только укоротить или удлинить нитку, как частота колебаний сразу изменится. При одной и той же длине нитки всегда будет одна и та же частота колебаний. Это собственная частота колебаний маятника. Получить заданную частоту колебаний можно, подбирая длину нити.

Колебания нитяного маятника — затухающие. Они могут стать незатухающими только в том случае, если маятник в такт с его колебаниями слегка подталкивать, компенсируя таким образом ту энергию, которую он затрачивает на преодоление сопротивления, оказываемого ему воздухом, энергию трения, земного притяжения.

Собственная частота характерна и для электрического колебательного контура. Она зависит, во-первых, от индуктивности катушки. Чем больше число витков и диаметр катушки, тем больше ее индуктивность, тем больше будет длительность периода каждого колебания. Собственная частота колебаний в контуре будет соответственно меньше. И, наоборот, с уменьшением индуктивности катушки сократится период колебаний — возрастет собственная частота колебаний в контуре. Во-вторых, собственная частота колебаний в контуре зависит от емкости его конденсатора. Чем емкость больше, тем больший заряд может накопить конденсатор, тем больше потребуется времени для его перезарядки, тем меньше частота колебаний в контуре. С уменьшением емкости конденсатора частота колебаний в контуре возрастает. Таким образом, собственную частоту затухающих колебаний в контуре можно регулировать изменением индуктивности катушки или емкости конденсатора.

Но в электрическом контуре, как и в механической колебательной системе, можно получить и незатухающие, т. е. вынужденные колебания, если при каждом колебании пополнять контур дополнительными порциями электрической энергии от какого-либо источника переменного тока.

Каким же образом в контуре приемника возбуждаются и поддерживаются незатухающие электрические колебания? Колебания радиочастоты, возбуждающиеся в антенне приемника. Эти колебания сообщают контуру первоначальный заряд, они же и поддерживают ритмичные колебания электронов в контуре. Но наиболее сильные незатухающие колебания в контуре приемника возникают только в момент резонанса собственной частоты контура с частотой тока в антенне. Как это понимать?

Люди старшего поколения рассказывают, будто в Петербурге от шедших в ногу солдат обвалился Египетский мост. А могло это случиться, видимо, при таких обстоятельствах. Все солдаты ритмично шагали по мосту. Мост от этого стал раскачиваться — колебаться. По случайному стечению обстоятельств собственная частота колебаний моста совпала с частотой шага солдат, и мост, как говорят, вошел в резонанс. Ритм строя сообщал мосту все новые и новые порции энергии. В результате мост настолько раскачался, что обрушился: слаженность воинского строя нанесла вред мосту. Если бы резонанса собственной частоты колебаний моста с частотой шага солдат не было, с мостом ничего бы не случилось. Поэтому, между прочим, при прохождении солдат по слабым мостам принято подавать команду «сбить ногу».

А вот опыт. Подойди к какому-нибудь струнному музыкальному инструменту и громко крикни «а»: какая-то из струн отзовется — зазвучит. Та из них, которая окажется в резонансе с частотой этого звука, будет колебаться сильнее остальных струн — она-то и отзовется на звук.

Еще один опыт — с маятником. Натяни горизонтально нетолстую веревку. Привяжи к ней тот же маятник из нити и пластилина (рис. 42).



Рис. 42. Опыт, иллюстрирующий явление резонанса


Перекинь через веревку еще один такой же маятник, но с более длинной ниткой. Длину подвески этого маятника можно изменять, подтягивая рукой свободный конец нитки. Приведи маятник в колебательное движение. При этом первый маятник тоже станет колебаться, но с меньшей амплитудой. Не останавливая колебаний второго маятника, постепенно уменьшай длину его подвески — амплитуда колебаний первого маятника будет увеличиваться. В этом опыте, иллюстрирующем резонанс механических колебаний, первый маятник является приемником колебаний, возбуждаемых вторым маятником. Причиной, вынуждающей первый маятник колебаться, являются периодические колебания растяжки с частотой, равной частоте колебаний второго маятника. Вынужденные колебания первого маятника будут иметь максимальную амплитуду лишь тогда, когда его собственная частота совпадает с частотой колебаний второго.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Юный радиолюбитель [7-изд]"

Книги похожие на "Юный радиолюбитель [7-изд]" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Виктор Борисов

Виктор Борисов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Виктор Борисов - Юный радиолюбитель [7-изд]"

Отзывы читателей о книге "Юный радиолюбитель [7-изд]", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.