Ник Лэйн - Энергия, секс, самоубийство

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Энергия, секс, самоубийство"
Описание и краткое содержание "Энергия, секс, самоубийство" читать бесплатно онлайн.
Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.
Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?
16+
Благодаря новому взгляду на энергию постепенно сложилось понимание того, что молекулярные связи содержат скрытую «потенциальную» энергию, которая может высвобождаться в процессе реакций. Живые существа способны отчасти улавливать или «консервировать» эту энергию в разных видах, а затем направлять ее на совершение работы, например сокращение мышц. Поэтому на самом деле говорить о «производстве энергии» живыми существами некорректно, хотя это настолько удобное выражение, что мне уже не раз случалось впадать в ересь. Когда я говорю «производство энергии», я имею в виду конверсию потенциальной энергии химических связей питательных веществ, например глюкозы, в биологическую энергетическую «валюту», которую организмы используют для совершения разнообразной работы; иными словами, я имею в виду производство большего количества такой «энергетической валюты». Именно о ней сейчас и пойдет речь.
«Цитохроматизм»
К концу XIX в. ученые знали, что дыхание происходит в клетках и является источником энергии для жизни. Но вопрос о том, как именно это происходит, как энергия, высвобождающаяся в процессе окисления глюкозы, связана с энергетическими потребностями жизни, оставлял простор для догадок.
Было ясно, что глюкоза не воспламеняется самопроизвольно в присутствии кислорода. Как говорят химики, кислород активен термодинамически, но устойчив кинетически: он медленно вступает в реакции. Это связано с тем, что перед тем, как вступить в реакцию, кислород должен быть «активирован». Такая активация требует либо вложения энергии (например, при зажигании спички), либо присутствия катализатора — вещества, снижающего энергию активации, необходимую для реакции. Ученым Викторианской эпохи казалось очевидным, что любой катализатор дыхания должен содержать железо, так как оно имеет высокое сродство к кислороду (вспомним ржавчину), но при этом способно обратимо с ним связываться. Было известно одно вещество, которое содержит железо и обратимо связывается с кислородом. Это гемоглобин — пигмент, придающий красный цвет эритроцитам; и именно цвет крови был первой подсказкой, позволившей понять, как протекает дыхание в живых клетках.
Пигменты (например, гемоглобин) окрашены потому, что поглощают свет в определенной полосе цветового спектра (вспомним радугу) и отражают свет других полос. Та область, в которой вещество поглощает свет, называется его спектром поглощения. При связывании с кислородом гемоглобин поглощает свет сине-зеленой и желтой части спектра, а отражает красный, вот почему артериальная кровь кажется нам ярко-красной. Спектр поглощения меняется, когда гемоглобин теряет кислород в венозной крови. Дезоксигемоглобин поглощает свет в зеленой части спектра и отражает красный и синий. Поэтому венозная кровь имеет багровый оттенок.
Учитывая, что дыхание происходит внутри клеток, исследователи стали искать похожий пигмент в тканях, а не в крови животных. Первым, кто добился успеха, был ирландский практикующий врач по имени Чарльз Макманн. Исследованиями он занимался в свободное от работы время в лаборатории, которую устроил на чердаке конюшни, где обычно хранилось сено. Сквозь щель в стене он следил за тропинкой, по которой к нему ходили пациенты, и, если не желал, чтобы его беспокоили, заранее звонил в колокольчик, подавая знак домохозяйке. В 1884 г. Макманн обнаружил в животных тканях пигмент, спектр поглощения которого варьировал примерно так, как у гемоглобина. Он утверждал, что это и есть искомый «дыхательный пигмент», но, к сожалению, не смог объяснить его сложный спектр поглощения, и даже не смог убедительно показать, что этот спектр действительно принадлежит этому пигменту. Открытие Макманна было забыто до тех пор, пока в 1925 г. этот пигмент не переоткрыл Дэвид Кейлин — ученый родом из Польши, работавший в Кембридже. По общим отзывам, Кейлин был не только блестящим исследователем и вдохновенным лектором, но и очень порядочным человеком, и он всегда подчеркивал, что приоритет этого открытия принадлежит Макманну. На самом деле Кейлин пошел гораздо дальше своего предшественника. Он показал, что сложность спектра поглощения связана с тем, что он относится не к одному, а к трем пигментам. Таким образом, он переступил камень преткновения, который сбил с толку Макманна. Кейлин назвал эти пигменты цитохромами (клеточными пигментами) и обозначил их буквами a, b и c согласно расположению полос на их спектрах поглощения. Эти буквенные обозначения до сих пор в ходу.
Однако было одно затруднение: как ни странно, ни один из открытых Кейлином цитохромов не взаимодействовал непосредственно с кислородом. Чего-то явно не хватало. На это недостающее звено пролил свет немецкий химик Отто Варбург, работавший в Берлине и получивший за свою работу Нобелевскую премию в 1931 г. Я сказал «пролил свет», потому что наблюдения Варбурга были косвенными и при этом очень хитроумными. Иначе было и нельзя, потому что дыхательные пигменты, в отличие от гемоглобина, присутствуют в клетке в исчезающе малых количествах, и их нельзя было выделить и изучить напрямую, используя грубые методы того времени. Варбург догадался, что вычислить спектр поглощения того, что он называл «дыхательным ферментом»[29], можно благодаря странному химическому свойству монооксида углерода (CO, или угарный газ), который связывается с соединениями железа в темноте, но отсоединяется (диссоциирует) от них на свету. Оказалось, что спектр поглощения дыхательного фермента соответствует спектру гемина — соединения, похожего на гемоглобин и хлорофилл (зеленый пигмент растений, поглощающий солнечный свет в процессе фотосинтеза).
Интересно, что дыхательный фермент активно поглощал свет в синей части спектра, а отражал зеленый, желтый и красный. Поэтому он имел коричневатый оттенок, а не красный, как гемоглобин, и не зеленый, как хлорофилл. Варбург обнаружил, что простые химические изменения могли превратить дыхательный фермент в красный или зеленый, и тогда спектр поглощения становился очень похожим на спектры гемоглобина или хлорофилла. Это навело его на предположение, которое он озвучил в своей нобелевской лекции: «от этого фермента произошли как пигмент крови, так и пигмент листьев <…> очевидно, он существовал до гемоглобина и хлорофилла». Из этих слов следует, что дыхание возникло в эволюции раньше фотосинтеза. Как мы увидим чуть позже, это прозрение Варбурга оказалось совершенно верным.
Дыхательная цепь
Несмотря на большой шаг вперед, Варбург все еще не мог понять, как именно происходит дыхание. На момент получения Нобелевской премии он склонялся к мысли, что дыхание — одноступенчатый процесс (при котором вся энергия глюкозы высвобождается одномоментно), и не мог объяснить, какое отношение к дыханию имеют открытые Дэвидом Кейлином цитохромы. Тем временем сам Кейлин разрабатывал концепцию дыхательной цепи. Он предполагал, что атомы водорода или, по крайней мере, составляющие их протоны и электроны отрываются от глюкозы и передаются по цепочке цитохромов, от одного к другому, как пожарные передают друг другу ведра, до тех пор, пока, наконец, не наступит реакция с кислородом с образованием воды. В чем преимущество такой последовательности мелких шажков? Любой, кто видел фотографии крушения «Гинденбурга» — самого большого дирижабля в мире[30], — имеет представление о том, какое огромное количество энергии высвобождается при взаимодействии водорода с кислородом. Если разбить эту реакцию на несколько промежуточных этапов, то на каждом из них можно получать небольшое и управляемое количество энергии, говорил Кейлин. Потом эту энергию организм мог бы использовать (как — тогда еще не знали) для совершения работы, например сокращения мышц.
В 1920-е и 1930-е гг. Кейлин и Варбург, расходившиеся во взглядах на многие детали процесса дыхания, вели оживленную переписку. По иронии судьбы найти подтверждение предложенной Кейлином концепции дыхательной цепи удалось не автору концепции, а Варбургу, который в 1930-х гг. открыл дополнительные небелковые компоненты (коферменты) этой цепи. В 1944 г. Варбургу присудили вторую Нобелевскую премию, однако, будучи евреем, он не получил ее из-за запрета Гитлера. (Тем не менее международная известность ученого, по-видимому, произвела впечатление даже на Гитлера, во всяком случае, Варбург избежал концлагеря или чего похуже.) Как ни печально, глубокое проникновение Кейлина в структуру и функции дыхательной цепи так и не было отмечено Нобелевской премией, что, несомненно, было упущением Нобелевского комитета.
Общая картина на тот момент складывалась такая. Глюкоза расщепляется на более мелкие фрагменты, которые используются в карусели взаимосвязанных реакций, известной под названием цикла Кребса[31]. В процессе этих реакций атомы углерода и кислорода отщепляются и выводятся в виде побочного продукта — углекислого газа. Атомы водорода связываются с коферментами Варбурга и поступают в дыхательную цепь. Там их разбирают на электроны и протоны, дорожки которых тут же расходятся. Что происходит с протонами, мы узнаем потом, а пока давайте проследим за электронами. Их передают по всей длине дыхательной цепи переносчики электронов. Каждый переносчик сначала восстанавливается (приобретает электроны), а потом окисляется (теряет электроны), передавая их следующему звену цепи. Это означает, что дыхательная цепь образует последовательность связанных окислительно-восстановительных реакций, то есть ведет себя как миниатюрный электрический провод. Электроны передаются по нему от переносчика к переносчику со скоростью примерно 1 электрон за 5–20 миллисекунд. Окислительно-восстановительные реакции являются экзергоническими, то есть при их протекании высвобождается энергия, которая может быть направлена на совершение работы. На заключительном этапе электроны переходят от цитохрома с к кислороду, где воссоединяются с протонами, образуя воду. Последняя реакция происходит в дыхательном ферменте Варбурга, который Кейлин переименовал в цитохромоксидазу, так как он использует кислород для окисления цитохрома с. Этот термин прижился и поныне в ходу.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Энергия, секс, самоубийство"
Книги похожие на "Энергия, секс, самоубийство" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Ник Лэйн - Энергия, секс, самоубийство"
Отзывы читателей о книге "Энергия, секс, самоубийство", комментарии и мнения людей о произведении.