Анатолий Рудой - Разум

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Разум"
Описание и краткое содержание "Разум" читать бесплатно онлайн.
Сведения, приведшие к деградации, знаниями назвать нельзя. А без них куда несётся людская громада? Неужели нет персон, способных вскрыть трагедию и показать её неотвратимый оскал? Пора назвать вещи их именами. Эпоха лукавого слововорота дала необратимые следствия. На их устранение уйдёт больше средств, чем на получение надёжных данных о мире, если бы репрессивной науки не было вовсе. Планета ждёт: пригоден ли разум человечий для освоения объектов в их натуральном виде? Достанет ли ума понять пространство, сознание и бытиё? Создаст ли человечество выживательное мировоззрение?
В пору шабаша людоедского материализма и выплёскивания злобности за пределы планеты, обращение к разуму — это крайняя попытка образумить взбесившуюся популяцию. Какой иной оценки заслужили люди, впавшие в истерику паразитизма, завоевания, разрушения…?
Придётся задачу упростить. Если не даётся подробная топология поверхности, оценим изменчивость по координатам вцелом. Для этого внутри скобок оставим перед координатами единичные коэффициенты, а перед всеми скобками запишем некоторый сомножитель для учёта свойств данного направления. Тогда дополнительно внесенных функций будет не шесть, а всего три. Но поскольку они стоят перед скобками, возводимых в квадрат, а вся сумма из трёх слагаемых даёт не саму длину отрезка, а тоже его квадрат, то надеяться на отыскание решения при жизни не приходится.
Необходимо дальнейшее упрощение. Неперспективность размещения координатной сетки в неоднородных средах вынуждает принять непорочность поверхности. Пусть она остаётся гладкой, одинаковой по всем направлениям и разность координат всегда равняется длине отрезка. Но это же тупик. Нет возможности так деформировать упрямую формулу, чтобы вскрылась тропинка к славе. Однако не тут–то было! Умный человек найдёт чем прокормиться. Мыслителей осенило озарение: да они же мёртвые!
И впрямь: координаты, как поставил Р. Декарт (1596 — 1650), так стоят они во всех анализах, исчислениях, преобразованиях и на всё отражают поднадоевший отсвет невинной научности. И это во время повального увлечения скоростями. Да если эти застывшие координаты разместить на движущемся объекте … да изобрести уравнение … да интерпретировать … да красиво обозвать … Вот оно искомое! В погоню за призраком бросились многие, но преуспели Пуанкаре, Минковский, Гильберт и Эйнштейн. Опуская моменты престижа и вклада каждого в потешный водевиль с названием теория относительности, отметим их настойчивый поиск отличительного признака нобелевского уровня. Нужно куда–то приспособить время. Нет сомнения, они попробовали пристроить его к раздельным координатам, к их разностям, может куда–то ещё и ощутили то же отчаяние, что и при попытке внести анизотропию. При полном непонимании сути времени, при условности движения, при волюнтаристском отношении к пространству куда бы ни пристегнуть параметр „t ”, всюду получаются неподнимаемые уравнения. Ну как можно представить зависимость координат или приращений, или всей суммы от векового роста времени. А вдруг и оно окажется неравномерным, прихотливым по направлениям и потребуется вводить новый раздел анализа с кусочными уравнениями, справедливыми каждое в своём времени? Нет! Нéкогда! Разберут все премии!
Поскольку слагаемые имеют размерность длины, то, не меняя их, следует приплюсовать к ним что–то с той же размерностью, но учитывающее время. Вырисовывается в воображении слагаемое из двух сомножителей, одно из которых известно — это „t ”. Второй множитель обязан иметь размерность: длина, делённая на секунду. В стане искателей ликование: действительно в природе существует такое соотношение и называется размерность скорости, т. е. км/с. Перемножение даёт «км», т. е. километр. Вроде бы получилось, но что делать с этим километром? Приплюсовать к координатам — не логично, к разностям — ещё нелепее. Наконец, вспышка очередного озарения: добавим к трём имеющимся одно четвёртое слагаемое вида v∙c, т. е. скорость, помноженную на секунду. Но что собой представляет эта самая „v ”? Если это аналоговая величина и изменяется в произвольных пределах, то сладить с уравнением будет не под силу. Запретим ей шалить! Пусть V = C, где С — скорость света. Почему? Да ни по чему! Просто потому, что автор сценария внёс в текст водевиля такую реплику, вот и всё научное объяснение. Тогда мёртвая формула (1) вроде оживает и принимает вид:
s2 = (x1 — x2)2 + (y1 — y2)2 + (z1 — z2)2 + сt. (3)
Задумано здорово, а получилось некрасиво. Ну что это в самом деле: все слагаемые, как слагаемые, имеют каждое собственную степень, а пристёгнутое сиротливо стоит неостепенённое. Если так оставить и разрешить ему иметь личное мнение, то хлопот с уравнением не оберёшься. Нечего ему выставляться, возведём и его в квадрат! Почему? Да ни по чему! Для сокращения дороги к премии. Формула стала серьёзнее и красивее, и даже появилось гипнотическое воздействие на читателя. Вот только, чтоб совсем сбить его с толку и время представим как разность двух отсчётов:
s2 = (x1 — x2)2 + (y1 — y2)2 + (z1 — z2)2 + с 2(t1 — t2)2.
Далее начинается украшательство. Так, заменим разности в скобках конечными приращениями, от них перейдём к дифферен- циалам, перепишем курсивом и получим идола двадцатого века:
ds2 = dx2 + dy2 + dz2 — c2dt2 (4)
Последнее соотношение называется основным уравнением теории относительности. Основным потому, что есть ещё расширенные уравнения А. Фридмана (1888 — 1925). Формула (4) показалась незаконченной, поскольку в ней не отображена материя, как таковая. Несмотря на то, что координаты размещены в материальном пространстве, интуитивно просится в формулу ещё нечто для описания самого пространства, но не пространства вообще, а только его материального наполнения. Поразмыслив, внесли плотность этой материи, как усреднённый показатель её свойств. Итак, в школьное уравнение (1) энтузиасты от науки по прихоти своей внесли два дополнительные слагаемые, которые здесь приводить не станем в связи с их гротескностью. Одно из них учитывает плотность материи, а второе — время 44. Решить уравнение удалось Фридману. И, подумать только, какой неожиданный получился результат: действительно, вселенная зависит–таки от плотности и времени. Надо же такому случиться? Вот было бы трагично узнать, что в уравнение внесли два параметра, а в решении–ответе этих параметров не оказалось. А так обошлось! Более того, отныне вселенной предписывалось вести себя не иначе, а как того требуют уравнения.
А они велели ей расширяться, оставаться неизменной или сжиматься в зависимости от значения плотности. В мир вошло гипнотическое помрачение с названием: нестационарная вселенная. Почему бы не высказать удивление: а какой ей следует быть? Есть ли четвёртый вариант вселенной, например, прыгающая, смеющаяся, бурлящая, плачущая, вертящаяся в хороводе …? Сотни кафедр и факультетов, десятки институтов, миллионы людей, заворожённые научной экзотикой, бросились в погоню за очередным миражом. А тут ещё дерзкий Хаббл на людскую беду обнаружил красное смещение спектра и пригрозил коллапсом или большим взрывом. Ясное дело: от катастрофы можно отгородиться только щитом из диссертаций, книг, дипломов, званий и степеней. Их уже столько, что безопасность человечья почти обеспечена. Ещё чуть–чуть и …
Представим, что отрезка нет! Тогда координаты протяжённости в формуле (4) равны нулю. Казалось бы и длина ds должна равняться нулю, но она отличается от нуля и равна ds = — cdt или s = ct (знаком минус пока пренебрежём). И вот тут–то голос самого Эйнштейна ставит неразумных на место: в нулевой точке координат и время равно нулю, так что всё сходится. Так ли? Но давайте раскроем равенство s = ct. При с ≡ км∙с–1, секунда в знаменателе сокращается с секундой сомножителя и в итоге получается км, т. е. километр. Отрезка нет, а километры, характеризующие отсутствующий отрезок, есть. Для спасения ситуации вводится система координат. Одна из них движется относительно другой. Тогда можно подобрать такое соотношение, когда, чего нет в одной из них, окажется в наличии в другой и наоборот. Жонглирование свойствами системы породило на радость любителей кроссвордов бездну парадоксов: близнецов, лифта, укорочения и удлинения стержней … истинную утеху для учёных мужей. Чем же ещё заниматься в институте, если не изучением и раскрытием парадоксов? Учёный тем учёнистее, чем больше изобретёт парадоксов. Нет парадокса — нет и учёного. Чемпионом по парадоксам является религия. За ней идут релятивисты во главе с Эйнштейном. Их колонна удлиняется и раздаётся вширь. Они несут покрывало на рассудок общества.
Всё, написанное по поводу формулы (1), можно было бы отнести к издержкам поиска истины. Дескать, чуть недоучли, где–то ошиблись, не так обрисовали … в дальнейшем уточнят, подправят и мир получит качественный продукт за несусветные вложения. Но никаких шансов на реанимацию релятивистская выходка не имеет. Этому препятствуют две основные причины. Первая — это абсолютизация света, а вторая — полное игнорирование сути времени. Представим бегуна, который ничего не знает о мире. Сможет ли он сам по себе, такой какой он есть заподозрить наличие скорости перемещения большей, чем способен развить человек? Нет! Ему в своих рассуждениях даже не от чего оттолкнуться. Для него собственная скорость покажется предельной и всякие другие движения станет сопоставлять с известным фактом. Далее, теперь пусть всадник ничего не знает о мире. Его верховая скорость станет мерилом скорости вообще, и ему от некуда деться придётся признать её предельной. Продлевая такую логику оценки всякого действия, в том числе и скорости, следует согласиться, что предельной будет та, которая запечатлелась в сознании как предельная, поскольку её предельность не с чем сравнить. Если бы люди знали нечто более быстрое, чем свет, они за предельность приняли бы это нечто.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Разум"
Книги похожие на "Разум" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Анатолий Рудой - Разум"
Отзывы читателей о книге "Разум", комментарии и мнения людей о произведении.