Уильям Паундстоун - Камень ломает ножницы. Как перехитрить кого угодно: практическое руководство

Все авторские права соблюдены. Напишите нам, если Вы не согласны.
Описание книги "Камень ломает ножницы. Как перехитрить кого угодно: практическое руководство"
Описание и краткое содержание "Камень ломает ножницы. Как перехитрить кого угодно: практическое руководство" читать бесплатно онлайн.
Перед вами практическое руководство: как получать выгоду от предсказуемого поведения других людей и использовать это умение в повседневной жизни. Прочитав эту книгу, вы узнаете, как предугадывать действия друзей, начальников, преподавателей, конкурентов и просто окружающих. Большинство людей запрограммированы совершать определенный «выбор» и следовать простым тенденциям, а потому их поведение предсказуемо даже тогда, когда они стараются быть оригинальными.
Уильям Паундстоун обладает даром извлекать из психологии и поведенческой экономики практические советы и доказывает: прогнозировать легко, приятно, а иногда и прибыльно!
Наилучшая стратегия – выбирать второй ответ (Б) в тестах с четырьмя вариантами и пятый ответ (Д) в тестах с пятью вариантами выбора.
Другой популярный совет при подготовке к тестам звучит так: «Никогда не выбирайте “никогда”». Следует избегать ответов, содержащих такие слова, как никогда, всегда, все или ничего. В нашем грешном и сложном мире эти универсалии без труда превращают истинное утверждение в ложное. Данный совет легко принять, особенно если задуматься, какой нелегкий труд – сочинять тест с несколькими вариантами ответа. На каждый верный ответ преподаватель должен придумать несколько правдоподобных неверных. Простые рецепты составления ложных утверждений должны использоваться достаточно часто.
Я обнаружил одно любопытное исключение. В исследованных мною тестах ответы «ни одно из вышеперечисленных» и «все из вышеперечисленных» в большинстве случаев оказывались верными. В одном из учебников для колледжа в тесте с четырьмя вариантами ответов такие, как «все/ничего», были правильными в 65 процентах случаев!
Ответы «ни одно из вышеперечисленных» не могут существовать отдельно; они должны быть окружены другими. Сложность задачи, по-видимому, мешает составителям включить нужное количество неверных ответов из категории «ни одно» или «все». В моей выборке ответ ни одно/все оказался верен в 52 процентах случаев. Такая близость к репрезентативности не может не вызывать удивления.
Другое любопытное эмпирическое правило гласит, что верным, скорее всего, окажется самый длинный из нескольких возможных ответов. На один из вопросов экзамена на водительские права в штате Вашингтон верным действительно оказывается самый длинный вариант (В):
Для поворота направо вы должны находиться:
А. В левом ряду.
Б. В среднем ряду.
В. В ряду, ближайшем к направлению, куда вы хотите повернуть.
Г. В любом ряду.
Составители тестов должны убедиться, что верные ответы бесспорны. Нередко это требует точных определений. В неверных ответах они могут не так стараться.
Подобно тестам, предполагающим выбор ответа «да» или «нет», тесты с несколькими вариантами ответа характеризуются избыточным чередованием. Довольно часто обнаруживались короткие тесты, в которых ни один правильный вариант не повторялся два раза подряд. Ключ к ответам напоминал поле для игры в классики.
Я подсчитал, насколько часто положение правильного ответа (A, Б, В…) повторяет положение предыдущего правильного ответа. Для тестов с тремя вариантами на выбор в моей базе данных правильные ответы в двух соседних вопросах совпадали только в 25 процентах случаев (против 33 процентов, ожидаемых для случайной последовательности). Для тестов с четырьмя вариантами выбора – совпадений 19 процентов (против 25 ожидаемых), а для тестов с пятью вариантами ответов – 18 процентов (против 20 ожидаемых).
На графике, иллюстрирующем эти результаты, линия отображает ожидаемую вероятность для настоящей случайной последовательности. Для любого количества вариантов выбора повторений оказалось слишком мало. Это означает, что испытуемый повышает свой шанс угадать ответ, просто не повторяя предыдущий.
Вероятность повторения ответа два раза подряд
Я составил соотношение этой и других стратегий, вычислив, насколько они улучшают шансы по сравнению со случайным угадыванием.
Совершенно очевидно, что лучшая стратегия – выбирать ответ «ничего из вышеперечисленного» или «все из вышеперечисленного». Эти варианты годятся почти в два раза чаще, чем остальные, на 90 процентов повышая шанс угадать по сравнению со случайным выбором (в некоторых наборах вариантов даны оба ответа, «ничего» и «все». Если вы хоть что-то знаете по теме, то сумеете отсеять неверный ответ).
Успеху способствуют и две другие стратегии – выбирать наиболее часто встречающиеся ответы и не повторять предыдущий. Эффективность примерно одинакова, особенно если вы поймете, что можете немного повысить вероятность успеха стратегии «не повторять предыдущий ответ» тем, что не повторите и следующий.
Когда требуется угадать ответ на вопрос с несколькими вариантами ответа, первым делом следует исключить явно неверные. Знание надежнее угадывания! Если вариант «ничего/все» не попал в число исключенных, выбирайте его. В противном случае используйте два других правила.
Пример. Вы не знаете ответа на вопрос № 2, но не сомневаетесь, что третий вариант (В) неверен. Остается три возможности. Среди предложенных вариантов нет «ничего из вышеперечисленного» или «все из вышеперечисленного».
В тестах с четырьмя вариантами выбора чаще верен второй вариант, и поэтому он предпочтительнее. Мысленно отметьте его «галочкой».
Вам известно, что правильные варианты ответов на соседние вопросы № 1 и № 3 – В и Г. Поэтому предпочтительнее отличный от них ответ – A или B. Мысленно отметьте их «галочками».
Анализ дает нам один голос за A, два за Б и ни одного за Г – В исключен на основании фактов. Вариант Б наиболее правдоподобен.
Если «голосование» дает равный результат, выбирайте любой из вариантов.
Совет колледжей прекрасно осведомлен о недостатках тестов, составленных вручную. Стандартизированный «Отборочный тест» (SAT) написан лучше, и угадать правильные ответы труднее, чем в обычных тестах для старших классов школы или колледжей. По возможности несколько вариантов ответа в тесте SAT располагаются в логическом или нумерационном порядке. В других случаях правильные ответы перемешиваются при помощи программного обеспечения. Это обесценивает стратегии, основанные на местоположении верного ответа в списке.
Совет колледжей публикует на своем сайте вопросы SAT (предполагается, что их не будут больше использовать) и примеры тестов. Я обнаружил, что для реальных тестов SAT, похоже, эффективна стратегия самого длинного ответа. Из 20 опубликованных на сайте вопросов с ответами в виде фразы или предложения в пяти случаях правильный ответ оказался самым длинным, и три раза он был связан с самым длинным ответом на другой вопрос. Если выбирать один из самых длинных ответов, то шанс угадать правильный составляет 6,5 из 20, или около 33 процентов, что превышает ожидаемые 20 процентов для SAT с пятью вариантами ответов.
Вполне возможно, что порядок ответов перетасован при помощи программного обеспечения. Но сами ответы все же приходится писать преподавателю, человеку. Он стремится замаскировать верный ответ, окружив его правдоподобными, но ошибочными вариантами (профессионалы называют их дистракторами). Правильный ответ обычно прячется в середине. Я имею в виду не середину списка – средним будет его значение. Аномальные ответы обычно неверные.
Распространено ложное представление, что в тесте SAT угадывание наказывается. Точнее было бы сказать, что система подсчета баллов, используемая Советом колледжей, наказывает за неверные ответы. При подсчете баллов Совет колледжей берет количество правильных ответов и вычитает определенную долю неправильных. Эта доля, составляющая 1/4 для тестов с выбором из пяти вариантов ответов, просто гарантирует, что невежда, пытающийся угадать ответ, не получит преимущества над тем, кто оставляет вопрос без ответа.
Такой подход включает в себя философию, которую я пытаюсь здесь применить. Стратегия угадывания полезна в том смысле, что она превосходит случайный выбор. Любая стратегия, обеспечивающая статистическое преимущество, работает на вас – в тестах SAT и во всех остальных.
И последнее правило: всегда пытайтесь угадать. Это эффективно даже при отсутствии какой-либо системы. Оптометристы предлагают пациенту угадать нижнюю строку таблицы, поскольку знают, что эти ответы часто оказываются правильными, несмотря на заверения пациента, что он не видит букв. Если вы совсем растерялись, спросите себя, какой из ответов выглядит более знакомым. Правильный ответ чаще кажется таковым. Возможно, вы его уже видели, а потом просто забыли, и это оставляет слабое ощущение «знакомого». Выбирайте «уже виденное» в качестве ответа.
Резюме: Как перехитрить тест с несколькими вариантами ответов• В тестах «да» или «нет» чаще встречаются ответы «да».
• В тестах с несколькими вариантами ответов чаще всего правильным бывает ответ (Б).
• Ответы «ничего из вышеперечисленного» и «все из вышеперечисленного» имеют непропорционально высокую вероятность оказаться верными.
• Ответ, который был правильным в предыдущем вопросе (например, «да» или Г), скорее всего, будет неверным в текущем.
• Стратегия для стандартизированных тестов, наподобие SAT, состоит в исключении аномалий. Не выбирайте ответ, который слишком сильно отличается от остальных.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Камень ломает ножницы. Как перехитрить кого угодно: практическое руководство"
Книги похожие на "Камень ломает ножницы. Как перехитрить кого угодно: практическое руководство" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Уильям Паундстоун - Камень ломает ножницы. Как перехитрить кого угодно: практическое руководство"
Отзывы читателей о книге "Камень ломает ножницы. Как перехитрить кого угодно: практическое руководство", комментарии и мнения людей о произведении.