» » » » Инна Вартанян - Коснуться невидимого, услышать неслышимое


Авторские права

Инна Вартанян - Коснуться невидимого, услышать неслышимое

Здесь можно скачать бесплатно "Инна Вартанян - Коснуться невидимого, услышать неслышимое" в формате fb2, epub, txt, doc, pdf. Жанр: Биология, издательство Наука, Ленинградское отделение, год 1985. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Инна Вартанян - Коснуться невидимого, услышать неслышимое
Рейтинг:
Название:
Коснуться невидимого, услышать неслышимое
Издательство:
Наука, Ленинградское отделение
Жанр:
Год:
1985
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Коснуться невидимого, услышать неслышимое"

Описание и краткое содержание "Коснуться невидимого, услышать неслышимое" читать бесплатно онлайн.



В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.






Сейчас фокусированный ультразвук используется в физиологии и разных областях медицины. В ряде случаев, однако, имеется только «введение», последующие «главы» нужно создавать. Отечественные работы по изучению и практическому использованию активирующего действия фокусированного ультразвука носят приоритетный характер, а это дополнительный аргумент для их усиления: важно, чтобы новая область развивалась и укреплялась.

Некоторые общие сведения об ультразвуке

Понятие «ультразвук» относится к волновому механическому колебательному процессу частотой от 2·104 до 109 Гц. Когда частота превышает 109, до 1013, Гц, говорят о гиперзвуке. Выделение ультразвука как самостоятельного понятия исторически связано со слухом человека. Если частота механических колебаний, распространяющихся по воздуху, выше воспринимаемой человеком, говорят об ультразвуке или, в зависимости от частоты, о гиперзвуке; если ниже — об инфразвуке. По физической природе инфразвук, ультра- и гиперзвук не отличаются друг от друга. Отличия возникают преимущественно при взаимодействии каждого из перечисленных колебательных процессов со средой. Например, из-за очень малых длин волн гиперзвука существенным становится взаимодействие его с квазичастицами среды — электронами, фотонами и другими.

Удивительная способность некоторых животных ориентироваться в пространстве, избегать препятствий в темноте всегда привлекала внимание и побуждала к выяснению ее причин. Итальянский ученый Л. Спалланцани в 1793 г. опубликовал сведения, согласно которым эта способность связана со слухом, а не со зрением, как предполагали раньше. Через 5 лет швейцарский энтомолог Ш. Жюрин привел данные, свидетельствующие о том, что именно слух летучих мышей позволяет им обнаруживать препятствия. Однако эти исследования не помешали французскому зоологу Ю. Кювье выдвинуть гипотезу, по которой способности к ориентации летучих мышей в темноте определяются очень развитой у них системой осязания. В дальнейшем английский ученый X. Хартридж вновь привлек внимание к возможности локализации этими животными колебаний высокой частоты, не воспринимаемых человеком. И лишь в 1938 г. Д. Гриффин — известный в дальнейшем американский специалист по ориентации с помощью эхолокации, а тогда студент — обнаружил высокочастотные сигналы, издаваемые летучими мышами. Исследования его и других ученых подтвердили ранние представления об ультразвуковой ориентации летучих мышей. К настоящему времени доказано, что многие животные издают и воспринимают ультразвуковые колебания: ночные птицы, например гуахара, млекопитающие, в частности некоторые из землероек, крысы, мыши. Спектр «звуков», издаваемых домашней кошкой, простирается до 60 кГц, то же самое характерно и для собак некоторых пород. Новые исследования постоянно увеличивают список животных, в сигналах которых присутствуют ультразвуковые составляющие. Наиболее детально изучены подобные сигналы у летучих мышей и дельфинов.

В повседневной жизни человек соприкасается с множеством источников ультразвуковых колебаний, природных или создаваемых им самим. Ультразвуки содержатся в шумах ветра и моря, издаются животными и даже самим человеком, присутствуют во время работы различных механизмов. В большинстве случаев они не воспринимаются человеком.

Ультразвук широко применяют в разных областях науки, техники, медицине. Специфические его особенности обусловлены, в частности, длиной волны, которая может быть короче диаметра излучающей поверхности, благодаря чему ультразвук способен распространяться направленно. Подобно свету его можно сфокусировать на ограниченном участке. В технике ультразвук получают преимущественно механическим и электроакустическим способами. В механических преобразователях кинетическая энергия, например струи воздуха, переходит в акустическую (принципы сирены, свистка). Другие принципы использованы в пьезоэлектрических и магнитострикционных преобразователях, которые значительно более распространены, чем механические. В пьезоэлектрических преобразователях использован эффект, обнаруженный в 1880 г. Жаком и Пьером Кюри. При деформации пластины кварца возникают электрические заряды. Электричество, возникающее при давлении, было названо «пьезоэлектричеством» («пьезо» — по-гречески «давить»). Но может быть и противоположный эффект: под действием электричества кварцевая пластинка меняет свои размеры. Если на пластинку подается переменное электрическое напряжение с частотой, равной ее собственной резонансной частоте, пластинка начинает колебаться с наибольшей амплитудой.

Принцип действия магнитострикционных преобразователей основан на изменении размеров ферромагнитного материала при действии на него магнитного поля («стрикцио» — по-латыни значит «сжатие»).

В наших исследованиях использовались излучатели с пьезокерамическими пластинками, работающими по типу кварцевых. Интересно отметить, что в природе имеются достаточно компактно «выполненные» фокусирующие системы, например у дельфинов. У них существует жировая линза, расположенная кпереди от источника ультразвука, которая формирует направленное ультразвуковое излучение.

Фокусирование ультразвука

Концентрация ультразвуковой энергии может быть достигнута разными способами, например с помощью линз, аналогично фокусировке света; путем направления нескольких ультразвуковых пучков в одну область одновременно или последовательно — перемещением одного излучателя под разными углами к заданной области, наподобие того, как направляются рентгеновские лучи при томографии.

В последние годы часто применяются фокусирующие преобразователи (излучатели ультразвука), выполненные на основе пьезокерамики и представляющие собой по форме часть сферы. Частота излучаемого ультразвука равна собственной резонансной частоте пьезокерамической пластинки. Когда на пластинку подают переменный ток резонансной частоты, то она колеблется в поперечном направлении, преобразуя электрический ток в механические колебания — ультразвук. Наибольшая концентрация ультразвуковой энергии достигается в центре кривизны излучателя, на расстоянии от пластинки, равном радиусу кривизны. Место наибольшей концентрации энергии принято называть фокальной областью. Размеры фокальной области излучателя зависят от частоты резонансных колебаний пьезокерамической пластинки и некоторых его конструктивных особенностей, в частности от так называемого угла раскрытия (рис. 14). Чем выше частота и больше угол раскрытия излучателя, тем меньше размеры фокальной области. Интенсивность ультразвука зависит от свойств пьезокерамической пластинки и мощности генератора, подающего на пластинку переменный ток.

Рис. 14. Геометрические характеристики сферического излучателя ультразвука.

R — радиус излучателя, F — фокусное расстояние, h — глубина, αm — угол раскрытия, r0 и l — соответственно поперечный радиус и продольная длина фокальной области.


Приборы, имевшиеся в нашем распоряжении, обеспечивали интенсивность ультразвука, осредненную по площади наибольшего поперечного сечения фокальной области, от долей до нескольких тысяч Вт/см2. Как правило, каждый излучатель питался от генератора, настроенного на резонансную частоту пьезокерамической пластинки. Кроме того, имелись генераторы с несколькими излучателями. Перестройка на нужный излучатель достигалась сменой отдельных блоков и дополнительной подстройкой резонансного контура. Например, одним генератором можно было осуществлять работу на трех излучателях с резонансными частотами 0.48, 0.887 и 2.67 МГц.

Для обеспечения перемещений фокальной области излучателя в объекте и минимальных потерь энергии по пути распространения ультразвуковых колебаний между пьезокерамической пластинкой и объектом помещается согласующая среда. В качестве одной из наиболее приемлемых и доступных сред используется вода. Ультразвук распространяется в воде с минимальным затуханием. Чтобы еще уменьшить потери акустической энергии, в частности из-за возникновения кавитации, вода должна быть максимально гомогенной. Наиболее частая причина нарушения гомогенности воды — выделение мельчайших пузырьков газа. Пузырьки вызывают увеличение поглощения и рассеяния ультразвука, способствуют возникновению кавитационных эффектов, которые заключаются в образовании быстро захлопывающихся паро-газов микрополостей и возникновении длительно существующих и стабильных газовых пузырьков, колеблющихся с частотой ультразвука. Для уменьшения возможности появления пузырьков воду дегазируют. Можно пользоваться и дистиллированной водой в тех случаях, когда она собирается из дистиллятора в сосуд без доступа воздуха. Пригодность воды для использования в качестве акустически согласующей среды легко проверить, пропустив через воду ультразвук заведомо большей интенсивности, чем будет использоваться в дальнейшем. При этом в сосуде не должно появляться видимых глазом мельчайших пузырьков (дегазации жидкости).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Коснуться невидимого, услышать неслышимое"

Книги похожие на "Коснуться невидимого, услышать неслышимое" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Инна Вартанян

Инна Вартанян - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Инна Вартанян - Коснуться невидимого, услышать неслышимое"

Отзывы читателей о книге "Коснуться невидимого, услышать неслышимое", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.