Joaquin Sandalinas - До предела чисел. Эйлер. Математический анализ.

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "До предела чисел. Эйлер. Математический анализ."
Описание и краткое содержание "До предела чисел. Эйлер. Математический анализ." читать бесплатно онлайн.
Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.
В последние годы своего пребывания в России Эйлер выполнял множество обязанностей в Академии. Он занимался вопросами садоводства, инженерным делом, работал над собственными книгами и руководил написанием других. Ученый входил в Комиссию мер и весов, сам вызвался аннотировать манускрипты о квадратуре круга, приходившие в академию, и закупать карандаши и бумагу. Самым трудоемким его занятием была ревизия русской картографии, которой, однако, Эйлер восхищался.
Разносторонняя и обширная профессиональная деятельность не мешала Эйлеру обращать внимание на деликатную политическую ситуацию в стране. В 1739 году закончилась русско-турецкая война, и местная знать была недовольна слишком большим количеством немцев на самых высоких государственных и административных постах. Когда в 1740 году на престол взошла Елизавета, дочь Петра I, Эйлер, испугавшись жестоких гонений на элиту немецкого происхождения и на всех иностранцев вообще, принял предложение о работе в Прусской академии наук и уехал в Берлин.
ГЛАВА 3
Берлин, столица анализа
Эйлер откликнулся на призыв Фридриха II, просвещенного правителя Пруссии, уже будучи известным ученым. В этот период он занялся новыми для себя дисциплинами, такими как геометрия, механика жидкостей и инженерное дело. При этом он никогда не оставлял анализ и посвятил ему ставшую бессмертной трилогию, а также работу по основополагающему вопросу — вариационному исчислению.
"Госпожа, я приехал из страны, где кто разговаривает, того вешают", — ответил Эйлер Софии Доротее, королеве-матери короля Пруссии, когда та добродушно упрекнула его в том, что он почти не участвует в придворных беседах. В 1741 году Эйлер вернулся в тепло старой доброй Европы, в Берлин. Этот город был сердцем просвещенного мира, а также центром распространения западной культуры, столицей Прусского королевства, где правил самый либеральный среди королей Европы Фридрих Великий (1712-1786). Здесь Эйлер оказался в обществе великих деятелей науки и искусства, таких как Франсуа-Мари Аруэ (1694-1778), более известный как Вольтер, музыкант Иоганн Иоахим Кванц (1697-1773), философ Иммануил Кант (1724-1804) и разносторонний Иоганн Вольфганг Гёте (1749-1832). Когда Эйлер приехал в город, Фридрих II был занят сражениями за господство над Силезией, и ученому пришлось жить, занимая в долг у знакомых, до самого возвращения короля в 1746 году. Эйлер купил участок земли с домом, разбил огород, посадил картофель и другие овощи и занялся научной работой как сотрудник общества Societas Regia Scientiarum. Оно было основано в 1700 году Фридрихом I по инициативе Лейбница. В годы правления Фридриха Вильгельма I общество переживало упадок, поскольку король не питал к интеллектуальной деятельности такого интереса, как его предшественник: его не волновало ничего, что не приносило моментальную политическую или военную выгоду. К счастью для общества, после окончания боев в Силезии Фридрих II вернул ему былую славу. К моменту возвращения короля Эйлер уже написал множество статей и несколько книг. Президентом Академии в то время был Пьер Луи Моро де Мо- пертюи, а Эйлер возглавлял математический отдел, но также занимался финансами, астрономией, инженерным делом и ботаникой. Вот что пишет историк Адольф Юшкевич:
"В Берлине он руководил постройкой обсерватории и наблюдал за посадками в ботаническом саду, занимался подбором сотрудников, контролировал различные финансовые вопросы, издавал серии ежегодных календарей, служивших одним из источников дохода Академии. Король также доверил Эйлеру практические вопросы: например, консультацию по проекту изменения уровня воды в канале Финов в 1749 году [...]. В этот период он также руководил работами по установке насосов и водопровода в Сан- Суси, летней резиденции короля".
Однако государь остался недоволен работой ученого, о чем свидетельствует отрывок из его письма Вольтеру:
"Я хотел установить гидравлический насос в своем саду: Эйлер подсчитал, какую необходимую силу должны иметь лопасти, чтобы донести воду до цистерны, откуда потом она бы попала в систему канализаций и орошала территорию дворца Сан-Суси. Мельница была построена в соответствии с геометрическими выкладками, но не могла поднять к цистерне объем воды больше, чем на пять шагов. О, суета сует! О, тщетность геометрии!"
В 1747 году Эйлера выбрали членом Лондонского королевского общества; в 1748-м он снова выиграл Grand Prix Парижской академии наук с задачей о трех телах, которой затем воспользовался Алекси Клод Клеро (1713-1765) в своей работе в этой области. В 1758 году Эйлер был назначен академиком Парижской академии, так что у него были все возможные почетные титулы. Слава ученого была так велика, что, когда русские войска в 1760 году вторглись в Германию и причинили серьезные разрушения его дому в Шарлоттенбурге, то русский генерал Готтлоб Курт Генрих фон Тотлебен поспешил возместить Эйлеру ущерб и извинился со словами: "Я не воюю против науки". Императрица Елизавета также отправила ученому 4000 крон в качестве компенсации.
Около 1750 года возник знаменитый спор об авторстве принципа наименьшего действия: Кениг приписывал его Лейбницу, а Мопертюи — себе. Считается, что Эйлер открыл его независимо от остальных, но не опубликовал, чтобы не поставить Мопертюи, формально бывшего его начальником, в неловкое положение. Вольтер встал на сторону Кенига и в 1752 году написал иронический рассказ "Диатриба доктора Акакия, папского лекаря", в котором высмеивал Мопертюи. Фридрих положил конец этой полемике, изгнав Вольтера из государства. Мопертюи, глубоко переживавший все эти события, также уехал из Берлина.
Академия осталась в руках Эйлера, который, тем не менее, не был назначен ее президентом. Сначала король предложил это место Жан Батисту Лерону Д’Аламберу, обладавшему бесспорным авторитетом, но с которым Эйлер был не в лучших отношениях. Он не хотел опять оказаться под начальством француза и высказал опасение, что Берлинская академия превращается в копию Парижской. Действительно, король назначал ее членами многих французов, особенно философов. Но Д’Аламбер, пообщавшись в ходе собеседований со смирившимся Эйлером, был поражен: этот мрачный ученый обладал невероятной памятью, разбирался во всех областях науки и был гением математики. Невозможно было понять, почему такой талант не продвигают по службе. Д’Аламбер с чрезвычайной любезностью отказался от места президента Академии и предложил назначить на него Эйлера — эрудита, известного во всем мире, у которого, к тому же, уже был здесь дом. Но, как мы уже говорили, в число личных качеств Эйлера не входила способность вести остроумные беседы и рассуждать об искусстве, литературе или философии, а также умение вести себя при дворе, что очень ценил Фридрих II. Можно сказать, что король придавал большее значение этому, а не научным знаниям своего "математического Циклопа", как называл Фридрих ученого в письмах Вольтеру. Поэтому правитель не последовал совету Д’Аламбера и сам занял должность президента, что, видимо, не пришлось Эйлеру по вкусу. С этого момента их отношения стали довольно напряженными, и Эйлер, получавший крайне привлекательные предложения из России, решил опять уехать. Однако Фридрих не отпустил его так просто (в те времена нельзя было сразу перестать служить монарху): он находил все новые причины, чтобы задержать ученого. В конце концов Эйлер все же получил разрешение на отъезд.
ФОРМУЛА ДЛЯ МНОГОГРАННИКОВ
Из всех работ Эйлера, написанных в Берлине, одну с трудом можно приписать к какой-либо области математики того времени. В конце предыдущей главы мы очертили принципы новой области математики — теории графов (начало ей положил сам Эйлер в решении задачи о мостах Кенигсберга) — и более обширной области, частью которой она является, — топологии. Сначала в частных письмах разным адресатам, отправленных между 1750 и 1751 годами, а потом и открыто в статье 1758 года Эйлер вернулся к топологии с невероятным результатом: формулой для выпуклых многогранников с С гранями, А ребрами и V вершинами:
C - A + V = 2.
В начале 2000-х годов читатели авторитетного журнала Mathematical Intelligencer голосовали за самую красивую математическую формулу в истории. Эта формула для полиэдров заняла второе место, а первое — формула, также связанная с Эйлером: еxi + 1 = 0.
Сегодня мы бы сказали, что выражение С - А + V является топологическим инвариантом, то есть характеристикой поверхности, не меняющейся несмотря на трансформации, которым она подвергается, в частности происходящими в результате деформации, не разрушающей ее. Поверхность, для которой формула Эйлера является топологическим инвариантом, — это сфера, а следовательно, и любой гомеоморфный ей трехмерный полиэдр, то есть все тела, полученные в результате деформации сферы.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "До предела чисел. Эйлер. Математический анализ."
Книги похожие на "До предела чисел. Эйлер. Математический анализ." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Joaquin Sandalinas - До предела чисел. Эйлер. Математический анализ."
Отзывы читателей о книге "До предела чисел. Эйлер. Математический анализ.", комментарии и мнения людей о произведении.