» » » » Рудольф Сворень - Шаг за шагом. Усилители и радиоузлы


Авторские права

Рудольф Сворень - Шаг за шагом. Усилители и радиоузлы

Здесь можно скачать бесплатно "Рудольф Сворень - Шаг за шагом. Усилители и радиоузлы" в формате fb2, epub, txt, doc, pdf. Жанр: Радиотехника, издательство "Детская литература", год 1965. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рудольф Сворень - Шаг за шагом. Усилители и радиоузлы
Рейтинг:
Название:
Шаг за шагом. Усилители и радиоузлы
Издательство:
"Детская литература"
Год:
1965
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Шаг за шагом. Усилители и радиоузлы"

Описание и краткое содержание "Шаг за шагом. Усилители и радиоузлы" читать бесплатно онлайн.



В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.






Рис. 52. Чем выше к. п. д. усилителя, тем больше выходная мощность при неизменной потребляемой мощности.


В усилителях НЧ главная арена борьбы за повышение к. п. д. — это анодные цепи ламп выходного каскада. Уменьшить мощность, потребляемую накальными цепями, мы не можем: для данного типа лампы напряжение и ток накала ни при каких обстоятельствах уменьшать нельзя. Экономить энергию, потребляемую в анодных и экранных цепях усилителя напряжения, не имеет особого смысла: на долю этих каскадов приходится сравнительно небольшая часть общего анодного тока, а значит, и небольшая часть мощности выпрямителя. Таким образом, остается единственная возможность заметно повысить к. п. д. всего усилителя — нужно уменьшить мощность, потребляемую в анодной цепи выходной лампы, точнее, повысить соотношение между выходной мощностью и потребляемой. Сейчас нам предстоит выяснить, какие существуют пути для того, чтобы улучшить это соотношение, и в какой степени повышение к. п. д. повлечет за собой рост (а может быть, и уменьшение?) искажений сигнала в выходном каскаде.


А, В и АВ с единицами и двойками

В этой странной, шифрованной записи скрыт секрет повышения к. п. д. усилителя. Ключ к шифру можно узнать, познакомившись с работой усилительного каскада, с теми событиями, которые происходят при изменении анодной нагрузки, смещения, напряжения сигнала, анодного и экранного напряжения— одним словом, при изменении режима лампы.

Еще раз нарисуем упрощенную схему выходного каскада и запишем, чему равна его выходная мощность Рвых и мощность, потребляемая в анодной цепи Рао (рис. 53, 1, д, е). Теперь прямо в «лоб» начнем атаку на к. п. д. — попробуем увеличить полезную мощность, повышая переменное напряжение Uа~ и переменную составляющую анодного тока Iа~.


Рис. 53, 1


Если увеличить сопротивление нагрузки , а это несложно сделать, изменив коэффициент трансформации Трв (рис. 49), то одновременно возрастет и напряжение Uа~ (закон Ома: U = I·R!). Казалось бы, найден путь повышения выходной мощности Рвых. Но, к сожалению, по этому пути мы далеко не уйдем.

Переменное напряжение на нагрузке , складываясь с постоянным анодным напряжением Uaо, определяет напряжение на аноде лампы . Во время положительных полупериодов результирующее напряжение на аноде равно сумме Uа0 и Uа~, а во время отрицательных полупериодов — их разности (рис. 53, 2). Поэтому вместе с напряжением на нагрузке растет максимальное напряжение на аноде (UмаксUа0 + Uн. ампл) и уменьшается минимальное напряжение (UминUа0 — Uн. ампл). Если в погоне за большой мощностью увеличить до такой степени, чтобы оно стало больше чем Uа0, то в некоторые моменты времени напряжение на аноде окажется отрицательным (рис. 53, 2, б, интервалы 1–2 и 3–4). При этом, естественно, и анодный ток станет равным нулю: при отрицательном напряжении на аноде он не притягивает электроны и они летят на управляющую, а в тетроде — на экранную сетку.

Прекращение анодного тока, пусть даже кратковременное, — это не что иное, как искажение формы сигнала, а его мы допустить не можем. Таким образом, и устанавливается предел повышения напряжения на нагрузке  — оно не может быть больше чем Uа0. Об этом можно сказать и иначе, если ввести коэффициент использования анодного напряжения ζ. Искажений кривой тока можно избежать, если коэффициент ζ будет меньше единицы (рис. 53, 2, в, г).



Рис. 53, 2


Потерпев неудачу с увеличением , попробуем подступиться к задаче с другой стороны — увеличим переменную составляющую анодного тока Iа~. Сделать это довольно просто — достаточно увеличить переменное напряжение на сетке Uвх, под действием которого меняется анодный ток. На рис. 53, 3, а вы видите встречавшийся раньше (рис. 30, 21) тройной график, на котором ламповая характеристика (динамическая) совмещена с графиками напряжения Uc и тока . На графиках показан случай, когда амплитуда переменного входного напряжения Uвх (ампл) равна постоянному отрицательному смещению на сетке. Ну, а что будет, если в погоне за большим переменным током увеличивать напряжение входного сигнала? Графики для этого случая показаны на рис. 53, 3, б. Присмотритесь к этим графикам и вы увидите, что результаты увеличения Uвх оказались весьма печальными — форма графика тока сильно искажена. За счет захода в положительную область напряжений на сетке срезаны верхушки на графике тока (интервалы 1–2 и 5–6). Как только на сетке появляется «плюс», она перехватывает часть электронов и ток резко уменьшает входное сопротивление лампы.


Рис. 53, 3


Кроме того, анодный ток искажен и в области его минимальных значений. Отрицательное напряжение на сетке «перестаралось» — оно зашло слишком далеко, в ту область, где лампа оказывается запертой и анодного тока вообще нет. Из-за этого происходит так называемая отсечка анодного тока — напряжение на управляющей сетке меняется, а анодный ток равен нулю (интервал 3–4). Из графиков ясно видно, что во избежание искажений амплитуда переменной составляющей анодного тока Iа~(ампл) не должна превышать постоянной составляющей Iао, а для этого напряжение на сетке Uc не должно заходить ни в положительную область, ни в область, соответствующую запиранию лампы. Если ввести коэффициент использования анодного тока γ (рис. 53, 5, в), то можно сказать, что неискаженное усиление возможно тогда, когда у не превышает единицы. Работа усилителя при этих условиях называется классом усиления А.

Максимальная неискаженная мощность, которую можно получить в классе А, соответствует коэффициентам ζ = 1 и γ = 1, то есть Uн (ампл) = Uа0 и Iа~(ампл) = Iа0. Таким образом, амплитуда наибольшей выходной мощности Pвых (ампл) равна мощности Ра0, потребляемой в анодной цепи от выпрямителя. Не забудьте, что здесь речь идет об амплитуде выходной мощности, а ее эффективное значение будет в два раза меньше (рис. 30, 9). Иными словами, эффективная выходная мощность Pвых  не превышает половины потребляемой мощности Ра0. Это значит, что максимально возможный к. п. д. анодной цепи в классе А не превышает 50 %. Практически к.п.д. для этого класса усиления составляет 20–30 %.



рис. 30, 9


Сейчас вам предстоит стать свидетелями того, как будет найден выход из, казалось бы, безвыходного положения. Мы познакомимся со схемами усиления, в которых к. п. д. анодной цепи выше и даже значительно выше, чем 50 %. При этом мы пойдем по только что забракованному пути повышения мощности Рвых — будем увеличивать переменную составляющую анодного тока. Как и раньше, этот путь приведет нас к недопустимым нелинейным искажениям. Но для схем, о которых пойдет речь, — это не слишком большое зло. Искажая форму анодного тока, они (чудеса, да и только!) дают на выходе неискаженный сигнал. Правда, это относится не ко всем искажениям, а лишь к некоторым их видам. Вот почему прежде, чем рассматривать «чудесные» схемы, нам целесообразно подробнее познакомиться с самим механизмом искажений.

На рис. 53 и 54 показаны тройные графики основных режимов работы усилителя, основных классов усиления. Переход из одного класса в другой можно осуществить, изменяя напряжение входного сигнала и отрицательное смещение на сетку.

График рис. 53, 3, а относится к классу А, для которого характерны низкий к. п. д. и малые искажения.

Класс усиления АВ (рис. 54, 55 и 56, 1, б, в) характеризуется отсечкой анодного тока.

В отличие от класса А, рабочую точку (начальное отрицательное смещение Ucм) выбирают не в середине прямолинейного участка ламповой характеристики, а сдвигают ее влево — в сторону больших отрицательных напряжений. Проще говоря, отрицательное смещение Ucм в классе АВ больше, чем в классе А (рис. 55).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Шаг за шагом. Усилители и радиоузлы"

Книги похожие на "Шаг за шагом. Усилители и радиоузлы" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Рудольф Сворень

Рудольф Сворень - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Рудольф Сворень - Шаг за шагом. Усилители и радиоузлы"

Отзывы читателей о книге "Шаг за шагом. Усилители и радиоузлы", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.