» » » » Владимир Поляков - Посвящение в радиоэлектронику


Авторские права

Владимир Поляков - Посвящение в радиоэлектронику

Здесь можно скачать бесплатно "Владимир Поляков - Посвящение в радиоэлектронику" в формате fb2, epub, txt, doc, pdf. Жанр: Техническая литература, издательство "Радио и связь", год 1988. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Владимир Поляков - Посвящение в радиоэлектронику
Рейтинг:
Название:
Посвящение в радиоэлектронику
Издательство:
"Радио и связь"
Год:
1988
ISBN:
5-256-00077-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Посвящение в радиоэлектронику"

Описание и краткое содержание "Посвящение в радиоэлектронику" читать бесплатно онлайн.



Популярно рассказано об основных достижениях радиоэлектроники — от радиовещания и телевидения до сложных вычислительных комплексов и систем. На многочисленных примерах показана все возрастающая значимость радиоэлектроники в современном мире. Даны сведения о физических основах, принципах действия и устройстве радиоэлектронной аппаратуры и ее элементов.

Для широкого круга радиолюбителей.






Мы узнали, что спектр синусоидального колебания самый простой: он состоит всего из одной спектральной линии на «своей» частоте f0. Вот почему несущие колебания радиовещательных станций строго синусоидальны. Нельзя же допустить, чтобы одна и та же станция принималась одновременно на нескольких частотах! После такого заключения некоторые из наиболее любознательных читателей могут прийти к полному недоумению: при передаче сигналов по радио надо применять синусоидальное несущее колебание, которое никакой информации не несет! Но информация-то все-таки передается! Никакого противоречия здесь, разумеется, нет. Прежде всего надо заметить, что исходный сигнал, несущий информацию (телеграфный, речевой или музыкальный), занимает некоторый спектр частот. Мы уже говорили о его ширине, а теперь изобразим сигнал и спектр графически. Обратите внимание, что спектр теперь уже не линейчатый, а сплошной. Линейчатым спектром обладают только периодические процессы, регулярно повторяющиеся во времени. А передача информации — процесс случайный, вероятностный. В зависимости от текста телеграммы могут передаваться различные сочетания точек и тире. И им будут соответствовать различные спектры.



Импульсы и их спектры.


Но общей для них будет занимаемая полоса частот, указанная на графиках. Ширина ее обозначена буквой В. Наложим передаваемый сигнал на синусоидальную несущую. Излучаемый в эфир или передаваемый по линии модулированный сигнал уже не будет чисто синусоидальным: его амплитуда будет изменяться в такт с передаваемым сообщением. Спектр излучаемого сигнала станет таким, как показано на рисунке. Кроме спектральной линии на частоте f0 — несущей — появятся боковые полосы. Это два зеркально-симметричных спектра по обе стороны от несущей. Форма их при амплитудной модуляции точно повторяет форму спектра исходного сигнала.



Спектр белого света.



Сигналы и их спектры.


Образование двух боковых полос в спектре AM колебания можно пояснить математически. Только удобнее вместо синусов взять четные функции косинусы (выражения при этом получаются проще и понятнее). А форма косинусоидального колебания точно такая же, как и синусоидального. Пусть несущая A·cos ωt промодулирована по амплитуде низкочастотным косинусоидальным колебанием с угловой частотой Ω. Вид получившегося сигнала показан на рисунке. Его максимальная амплитуда равна (1 + m)А, а минимальная - (1 — m)А. Параметр m называется коэффициентом модуляции.

При AM он не может быть больше единицы, поскольку уже при m = 1 минимальная амплитуда сигнала падает до нуля. Запишем выражение для AM сигнала:

= А(1 + m·cos Ωt)·cos ωt,

где А — амплитуда несущей; ω — угловая частота несущей; Ω — угловая частота модулирующего колебания.

Это выражение легко преобразовать с помощью известного тригонометрического тождества


Раскрывая скобки и используя это тождество, получаем


Из этого выражения видно, что напряжение сигнала является суммой трех синусоидальных колебаний; несущей (первое слагаемое), нижней боковой частоты (второе слагаемое) и верхней боковой частоты (третье слагаемое). Эти три колебания и составляют спектр сигнала при AM синусоидальным сигналом. Если же в модулирующем сигнале содержится несколько низкочастотных ко-

 засада:( В источнике OCR отсутствуют стр. 52, 53

И устройство, вполне пригодное для этой цели, нам уже встречалось. Вспомните простейший датчик углового положения фюзеляжа самолета. Если жесткий отвес с грузом на конце заставить колебаться подобно маятнику, то с движка потенциометра можно будет снять синусоидальный электрический сигнал. Есть только два существенных «но», из-за которых подобные устройства не нашли практического применения.



Преобразователь колебаний маятника в электрический сигнал.


Первое «но» — частота генерируемых колебаний оказывается слишком низкой. Сколько раз в секунду может качнуться маятник?

Два, три, от силы десять, если маятник достаточно короткий. А нужны гораздо большие частоты. И второе «но» — однажды запущенный маятник покачается-покачается да и остановится. Колебания с постоянно уменьшающейся до нуля амплитудой называются затухающими. Обычно же требуются колебания с неизменной амплитудой, то есть незатухающие. Нельзя же, например, допустить, чтобы громкость приема радиостанции постепенно уменьшалась и сходила на нет. Следовательно, необходимо устройство, подталкивающее наш маятник в такт его собственным колебаниям. Такое устройство есть в любых часах. Масса гирь или сила пружины через анкерное колесо периодически подталкивают маятник, и часы не останавливаются. Воистину это гениальное изобретение — часы — является механическим аналогом электронного генератора незатухающих колебаний.

Чтобы повысить частоту, надо уменьшить размеры маятника. При этом удобнее использовать для возвращения маятника в исходное положение после каждого колебания не силу тяжести, а силу упругости. Так устроен пружинный маятник. Его частота повышается с увеличением упругости подвеса и уменьшением массы груза. Тогда можно и совсем отказаться от пружины — пусть работает упругость самого материала грузика! Образец такого маятника — упругий стерженек или пластинка, колеблющаяся по толщине. Остается открытым вопрос, как заставить пластинку колебаться. Можно ударом. Но колебания будут затухающими. Играли когда-нибудь на ксилофоне? Если даже и не играли, то представляете себе устройство этого музыкального инструмента. Удар молоточка по пластине вызывает звук, а высота тона соответствует частоте колебаний пластинки. Обратите внимание: чем меньше пластинка, тем выше частота создаваемых ею колебаний, тем выше и тон звучания. А частота колебаний упругой пластинки при размерах ее менее сантиметра будет лежать в неслышимом ультразвуковом диапазоне и может достигать десятков миллионов колебаний в секунду (десятков мегагерц). Как же построить анкерное колесо, пригодное для столь высоких частот? К счастью, природа сама позаботилась о том, чтобы изобретатели не выдумывали подобных «микроколес».



Пружинный маятник и колебания стержня по толщине.


Некоторые кристаллические вещества, в том числе кварц, сегнетова соль и ряд искусственных керамик, обладают пьезоэлектрическим эффектом. Если кристалл сжать, на его поверхности появятся электрические заряды. Растянуть — снова появятся заряды, но уже противоположного знака. Как это объяснить физически? Да очень просто, на житейском примере. Из подошвы вашего ботинка выступает гвоздь, и ходить стало больно при каждом шаге гвоздь колется. Вы вооружаетесь молотком и плоскогубцами, снимаете ботинок и… никакого гвоздя не обнаруживаете. Надели ботинок снова, наступили — колет! Причина очевидна: гвоздь выступает только под тяжестью ноги, сжимающей подошву, которая при этом деформируется, уменьшается по толщине. Пьезокристалл содержит решетку положительных ионов и такую же решетку отрицательных ионов, как бы вложенную в первую. При деформации кристалла положительные ионы выступают наружу, подобно гвоздям из подошвы, создавая на этой поверхности положительный заряд. А на противоположной поверхности выступают отрицательные ионы, создавая такой же заряд противоположного знака. Изменился знак деформации (сжали, вместо того чтобы растягивать) изменился и знак зарядов на поверхностях кристалла.



Колебания пьезокристалла.


При колебаниях пьезоэлемента (так называют пьезоэлектрическую пластинку, вырезанную из кристалла) на поверхности пластинки появляется переменный заряд, изменяющийся по синусоидальному закону с частотой ее колебаний. Заряд можно снять, усилить специальным усилителем электрических колебаний и снова подвести к пластинке. Вступит в действие обратный пьезоэффект при сообщении пластинке заряда она деформируется. Таким образом, в пластинке пьезоэлектрика можно поддерживать незатухающие колебания.

Особо высокой стабильностью к изменениям температуры и других параметров окружающей среды обладают кварцевые пьезоэлементы резонаторы. Поэтому генераторы с кварцевыми резонаторами широко используют для получения незатухающих колебаний высокой частоты. Видели кварцевые часы? Может быть, такие часы у вас уже есть? Их сердце-кварцевый генератор. Его высокочастотные колебания с помощью интегральных микросхем делят по частоте, получая таким образом секундные, минутные, часовые и другие импульсы. Они, в свою очередь, управляют ходом стрелки или показаниями цифрового индикатора. Нестабильность кварцевых часов, т. е. точность их хода, составляет около 3·10-6. Это значит, что кварцевые часы «уходят» менее чем на одну секунду за несколько дней. Вот так еще раз, уже в наши дни, подтвердилась прозорливость Христиана Гюйгенса, выбравшего эталоном времени период колебании маятника!


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Посвящение в радиоэлектронику"

Книги похожие на "Посвящение в радиоэлектронику" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Владимир Поляков

Владимир Поляков - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Владимир Поляков - Посвящение в радиоэлектронику"

Отзывы читателей о книге "Посвящение в радиоэлектронику", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.