» » » » Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.


Авторские права

Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.

Здесь можно скачать бесплатно "Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство «Де Агостини», год 2014. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии.
Рейтинг:
Название:
Том 28. Математика жизни. Численные модели в биологии и экологии.
Издательство:
«Де Агостини»
Год:
2014
ISBN:
978-5-9774-0723-6
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Том 28. Математика жизни. Численные модели в биологии и экологии."

Описание и краткое содержание "Том 28. Математика жизни. Численные модели в биологии и экологии." читать бесплатно онлайн.



Жизнь — одно из самых прекрасных и сложных явлений на планете, изучением которого с начала XX века занимается не только одна биология. Физики, а затем и математики обнаружили, что некоторые биологические явления можно описать с помощью математического языка. Так родилась новая дисциплина — математическая биология, или биоматематика. Благодаря ей сегодня можно получить ответы на множество важных вопросов, касающихся биологии и биомедицины. Эта книга представляет собой панорамный обзор различных явлений, которые изучает биоматематика.






* * *

СЕТЬ ХОПФИЛДА

Механизм обучения, запоминания букв, цифр и сигналов светофора можно смоделировать с помощью нейронной сети. Модель памяти, определяемая с помощью тензорного произведения, известна как сеть Хопфилда. Она названа в честь исследователя Джона Джозефа Хопфилда, который представил эту модель в 1980-е годы. Сегодня модель Хопфилда используется в самых разных цифровых системах: не только для решения множества физических задач, но и в электронике, и при обработке изображений.



Модель памяти Хопфилда из восьми нейронов. Каждый нейрон в этой модели связан со всеми остальными.

* * *

Решение систем уравнений. Эксперимент энтомолога

Обратные матрицы применяются также для решения систем уравнений. Рассмотрим систему из трех уравнений с тремя неизвестными:

а11х + а12y + а13z = b1

а21х + а22y + а23z = b2

а31х + а32y + а33z = b3

Матрицы также используются для представления систем уравнений:


Это равенство равносильно следующему:

А·X = В.

Если мы найдем матрицу, обратную А, то есть А-1, а затем умножим обе части равенства на эту обратную матрицу:

А-1·А·Х = А-1· В,

то, поскольку произведение А·А-1 равно единичной матрице Е, имеем:

Е·Х = А-1·В.

Кроме того, так как произведение любой матрицы на единичную матрицу Е равно исходной матрице, получим:

Х = А-В.

Таким образом, решить систему уравнений, то есть определить значения х, у, z, можно с помощью обратной матрицы коэффициентов: нужно умножить ее на вектор-столбец свободных членов системы уравнений.

Продемонстрируем этот метод на примере под названием «эксперимент энтомолога». Допустим, что мы отправились в поле в поисках определенного вида насекомых и разместили ловушки там, где эти насекомые водятся. Спустя несколько дней мы вернулись к ловушкам, чтобы собрать насекомых. В лаборатории мы установили, что в ловушках оказалось 180 насекомых. Мы разделили их на молодых (обозначим их через х) и взрослых (у) особей. Имеем первое уравнение системы:

ху = 180.

На основе результатов аналогичных экспериментов, проведенных ранее, мы знаем, что для насекомых этого вида соотношение молодых и взрослых особей равно 2 к 1. Кроме того, в силу естественных причин 6 взрослых насекомых умерло:

2х = у — 6.

Чтобы определить численность молодых и взрослых особей, нужно решить следующую систему уравнений:

х + у = 180,

2х = у — 6.

Второе уравнение можно записать в виде: 2х — у = —6. Система примет вид:

ху = 180,

2х — у = -6.

В матричной нотации эта система уравнений записывается так:


Имеет ли система уравнений решение?

Проницательные математики имеют одну достойную привычку — они не тратят время на бесполезные действия. Одним из наиболее ярких примеров этому является решение систем уравнений. Рассмотрим все возможные группы систем уравнений.

Во-первых, система может не иметь решений — в этом случае она называется несовместной. Представим, что система состоит из двух уравнений, описывающих две параллельные прямые. Поскольку прямые не пересекаются, система не будет иметь решений. Во-вторых, система может иметь бесконечно много решений, то есть быть неопределенной. Продолжив аналогию с прямыми, такая система состоит из двух уравнений, описывающих две совпадающие прямые, имеющие бесконечно много общих точек. Наконец, если система из двух уравнений описывает прямые, пересекающиеся в одной точке, она называется совместной и определенной. Ее решением будет единственная точка пересечения прямых (х, у).

Рассмотрим систему из трех уравнений, которая в матричном виде выглядит так:


Система является совместной и определенной, если определитель матрицы А


отличен от нуля. Если определитель А равен 0, система будет либо совместной и неопределенной, либо несовместной. К примеру, система уравнений в эксперименте энтомолога в матричном виде будет записываться так:


Поскольку эта система является совместной и определенной, ее можно решить.

И действительно, если мы вычислим определитель


он будет отличен от нуля.


Сколько молодых и взрослых насекомых поймал энтомолог. Правило Крамера

Правило Крамера — это метод решения систем линейных уравнений с помощью определителей. Он был представлен Габриэлем Крамером в 1750 году.



Промежуточный этап решения системы уравнений по правилу Крамера в программе MathLab.


Значения неизвестных определяются путем вычисления определителя для двух типов матриц, Dj и D. Правило Крамера можно использовать только тогда, когда число уравнений равно числу неизвестных, а определитель матрицы коэффициентов отличен от нуля (det(D) не = 0). Объясним правило Крамера на примере эксперимента энтомолога. Система линейных уравнений выглядит так:


Обозначим через D матрицу коэффициентов системы:


Определитель этой матрицы det(D) равен —3. Так как система имеет две неизвестные, х и у, имеем две матрицы Dj: Dx и Dy. Чтобы составить матрицу Dj, нужно заменить j-й столбец матрицы D на вектор-столбец, образованный свободными членами системы:


В нашем эксперименте первой неизвестной является х, поэтому j будет равен 1. Если мы заменим первый столбец матрицы D на вектор-столбец, образованный свободными членами системы, матрица Dx примет вид:


det(Dx) будет равен —174, так как (180)·(—1) — 1·(—6) = —174. Рассуждая аналогичным образом и учитывая, что второй неизвестной является у, то есть j = 2, получим, что матрица Dy имеет вид:


Ее определитель равен —366, так как det(Dy) равен 1·(—6) — 180·2.

Правило Крамера гласит, что решение системы уравнений можно найти, вычислив следующие выражения:


Следовательно, в эксперименте энтомолога получим:


Энтомолог поймал 38 молодых особей (х) и 122 взрослых (у).

Глава 6

Экология и математика. Взаимовыгодное сотрудничество

Живые существа, будь то растения, животные или микроорганизмы, взаимодействуют между собой и с окружающей средой. Биологические организмы, принадлежащие к различным видам, образуют общую природную среду — экосистему. В экосистеме можно выделить некоторые физические факторы, также называемые абиотическими, поскольку они не имеют биологической природы, и биотические факторы, которые относятся к живым обитателям экосистемы. Абиотические факторы — это все факторы, связанные с геологией и климатом: свет, вода, температура, атмосфера и состав почвы. К биотическим факторам относятся растения, травоядные и хищные животные, грибы, бактерии и т. д.



Эрнст Генрих Геккель (1834–1919) первым ввел термин «экология». Справа изображено созданное им «древо жизни».


Экосистемы изучает экология, появившаяся в XIX веке как подраздел биологии. Она преимущественно рассматривает задачи, связанные с многообразием живых существ (биологическим разнообразием), взаимосвязи между живыми организмами и окружающей средой. С момента появления экологии в ней использовались инструменты математической биологии для построения моделей, позволяющих описывать и прогнозировать экологические явления. Это привело к быстрому развитию новой науки и появлению в ней многих понятий и теорий, имеющих математическую основу.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Том 28. Математика жизни. Численные модели в биологии и экологии."

Книги похожие на "Том 28. Математика жизни. Численные модели в биологии и экологии." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Рафаэль Лаос-Бельтра

Рафаэль Лаос-Бельтра - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Рафаэль Лаос-Бельтра - Том 28. Математика жизни. Численные модели в биологии и экологии."

Отзывы читателей о книге "Том 28. Математика жизни. Численные модели в биологии и экологии.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.