» » » » Довид Ласерна - На волне Вселенной. Шрёдингер. Квантовые парадоксы


Авторские права

Довид Ласерна - На волне Вселенной. Шрёдингер. Квантовые парадоксы

Здесь можно скачать бесплатно "Довид Ласерна - На волне Вселенной. Шрёдингер. Квантовые парадоксы" в формате fb2, epub, txt, doc, pdf. Жанр: Научпоп, издательство Де Агостини, год 2012. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Довид Ласерна - На волне Вселенной. Шрёдингер. Квантовые парадоксы
Рейтинг:
Название:
На волне Вселенной. Шрёдингер. Квантовые парадоксы
Издательство:
Де Агостини
Жанр:
Год:
2012
ISBN:
2409-0069
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "На волне Вселенной. Шрёдингер. Квантовые парадоксы"

Описание и краткое содержание "На волне Вселенной. Шрёдингер. Квантовые парадоксы" читать бесплатно онлайн.



Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.

Прим. OCR: Врезки текста выделены жирным шрифтом. Символ "корень квадратный" заменен в тексте SQRT().






«Через несколько дней Шрёдингер заболел — вероятно, вследствие чрезмерного перенапряжения. Он слег с простудой. Госпожа Бор ухаживала за ним, приносила ему чай с пирожными, а Нильс Бор сидел на краешке кровати и внушал Шрёдингеру: «Но вы же должны признать, что...» 

При всем проявленном рвении Бор признавал вклад, сделанный Шрёдингером: «Ваша волновая механика принесла с собой такую математическую ясность и простоту, что явилась гигантским шагом вперед». Инструмент, предложенный Шрёдингером, также был бесценным, но он не соответствовал прилагаемой инструкции. Даже Гейзенберг оценил волновое уравнение по достоинству. Победив лихорадку и вернувшись из Копенгагена живым и здоровым, Шрёдингер надолго запомнил дар убеждения, присущий Бору. Он даже признался Вину: «Довольно скоро наступает момент, когда ты уже не понимаешь, должен ты принять позицию атакующего или сам атаковать ее». Словом, поездка в Копенгаген стала для Шрёдингера «действительно незабываемым опытом».

Гейзенберг все это время находился на втором плане. Поприсутствовав на поединке Бора и Шрёдингера, он перевернул страницу квантовой теории — эту главу он считал завершенной, а споры относительно нее — бесцельными.

Неопределенность

Осознавая последствия своей интерпретации волновой функции, Макс Борн принял рискованное решение: «Я готов отказаться от детерминизма ради атомного плана».

В 1927 году Гейзенберг предоставляет для такого отказа весомые аргументы и четко определяет границы детерминизма относительно квантовой физики. Своими мыслями он делится с Паули, написав тому письмо на десять с лишним страниц, которое впоследствии послужит основой для статьи «О наглядном содержании квантовотеоретической кинематики и механики». В работе была освещена статистическая интерпретация функции |ψ|², а ее публикация в марте этого же года ознаменовала конец эпохи классической механики. Кроме того, работа вводила в физику новое уравнение, которое станет таким же известным, как уравнение Шрёдингера.

Динамика Ньютона основывалась на следующих постулатах: расположение и скорость тела в любой момент могут быть определены с произвольной точностью. Теоретически траектория определяется решением дифференциального уравнения, а на практике достаточно определить время и положение объекта. Но для этого необходимо проследить за его движением. Это условие не создает трудностей, когда речь идет о мяче или космическом корабле. Но как увидеть электрон? Для начала его необходимо осветить. Однако осветить частицу — не то же самое, что осветить мяч. В случае с мячом существует значительное отличие в масштабах между размером структуры, которую рассматривают (мяч), и тем, что его освещает (фотон). А элементарная частица и фотон — это два квантовых объекта, которые вступают между собой во взаимодействие.

Мы можем проследить за траекторией мяча на теннисном корте. При этом свет воздействует на электроны, в изобилии встречающиеся в пространстве (затем эти электроны возвращаются на уровни с более низкой энергией и излучают фотоны, которые улавливаются клетками нашей сетчатки), но не смещает мяч с его траектории. Как мы видели в главе 1, Эйнштейн пришел к выводу, что фотоны должны себя вести как частицы. Затем Комптон доказал в лаборатории, что светящиеся кванты заставляют электроны изменить траекторию, словно при столкновении бильярдных шаров. Таким образом, простая попытка осветить частицу вызывает ее смещение относительно положения, которое мы хотели зафиксировать. Можно ли узнать, где находилась частица до того, как ее траектория была изменена? Нет. Единственный способ узнать положение частицы — это зафиксировать его, при этом сам факт наблюдения влечет изменение этого положения. Представим, что теннисный мяч, получив импульс от ракетки, меняет свою траекторию при каждом столкновении с фотоном. В этом случае было бы практически невозможно воспроизвести подобную хаотичную траекторию. Именно это и происходит на уровне атомов.

Можно попробовать уменьшить энергию света, чтобы сократить воздействие на электрон и избежать значительного изменения его траектории. Согласно формуле Планка (Е = h х v), уменьшение энергии света происходит путем снижения частоты или удлинения электромагнитных волн, что одно и то же. Но эта стратегия не срабатывает. Четкость изображения (оно формируется с помощью электромагнитных волн) зависит от длины волны, которая с ним взаимодействует. Чем сильнее волны удлиняются, тем более размытой становится картинка, которую они дают. Это какой-то заговор! Мы способны или определить траекторию электрона, но при этом сам факт наблюдения эту траекторию нарушает, или сделать так, чтобы энергия не влияла на траекторию частицы, но при этом мы не сможем частицу рассмотреть.

Вернемся к примеру с теннисным кортом. Предположим, что у нас есть очень простой прибор, позволяющий менять длину волны света, с которой мы хотели бы смотреть соревнования. В принципе, на короткий период мы можем обеспечить достаточную четкость изображения, но фотоны толкают мяч с такой силой, что световые частицы, проходящие перед нашими глазами, не могут зафиксировать его положение. Будем увеличивать длину световой волны, снижая таким образом их влияние на мяч. Изображение корта станет более размытым. В тот момент, когда начинает вырисовываться траектория мяча, мы превысим допустимое разрешение и снова окажемся погруженными в квантовый туман. Как видите, существует степень неопределенности, присущая наблюдению, которую нельзя уменьшить. А все потому, что свет (измеряющий субъект) и электрон (измеряемый объект) являются квантовыми сущностями, которые воздействуют друг на друга.


Неопределенность в цифрах

Возьмем отношение Δq · Δρ => h/4π, которое можно переформулировать, используя Δν, при этом р=m • у:

Неравенство показывает, что граница неопределенности для q и v зависит от отношения между постоянной Планка и массой т. Более того, для макроскопических объектов h будет незначительной, следовательно, Δq и Δρ тоже могут иметь малые значения. Таким образом, создается впечатление, что мы можем определить результат с желаемой точностью. Но с того момента как масса и размер приближаются к постоянной Планка, неопределенности начинают выходить на первый план. Чтобы доказать это, применим отношения неопределенности к трем различным объектам.

1. Автомобиль. Примем его массу примерно равной одной тонне:

Предположим, что автомобиль перемещается со скоростью 100 км/час (около 30 м/сек):

Разница между размером машины, который измеряется в метрах, и неопределенностью положения равна единице с 39 нулями перед ней. Невообразимо мало.

2. Пчела массой ОД грамма:

Это насекомое может перемещаться с максимальной скоростью 7 м/с:

Для пчелы длиной несколько сантиметров масштаб разницы между неопределенностью ее положения и размером — 10~30. Это очень мало.

3. Электрон массой около 9,11 х 10-31 кг:

Присвоим электрону среднюю скорость 10 6 м/сек, или примерно 1% от скорости света:

Радиус орбиты электрона водорода в фундаментальном состоянии (модель Бора), как правило, является величиной, лежащей в основе модели атома. Как мы уже увидели, радиус соответствует волновой функции Шрёдингера для той же энергии. Его значение r = 5,29 х 10-11 метров. Таким образом, в случае с электроном, неопределенность его положения — одного порядка с размером места, в котором он находится: невозможно его отследить.



Мы рассмотрели конкретный случай, но подобная неопределенность может наблюдаться в любом экспериментальном контексте. Физики обозначают степень неопределенности измерения с помощью символа Δ. Таким образом, Δx = 0 означает, что пространственная координатах частицы может иметь лишь одно значение, то есть положение частицы четко зафиксировано. Однако Δx = 5 означает, что частица может находиться где угодно в радиусе 5 метров. Гейзенберг не был удовлетворен изучением неопределенности и определил ее границы при помощи постоянной Планка:

где q означает положение частицы, а р — ее импульс. Речь идет о принципе неопределенности, в котором объединены две различные физики, и наше знание об одной обнаруживается через информированность о другой.


Заразительность неопределенности

Помимо импульса и положения, Гейзенберг присвоил свое соотношение неопределенности другим парам сопряженных величин, произведение которых измеряется в тех же единицах, что и действие, то есть, подобно постоянной Планка, определяется как произведение энергии на время:


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "На волне Вселенной. Шрёдингер. Квантовые парадоксы"

Книги похожие на "На волне Вселенной. Шрёдингер. Квантовые парадоксы" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Довид Ласерна

Довид Ласерна - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Довид Ласерна - На волне Вселенной. Шрёдингер. Квантовые парадоксы"

Отзывы читателей о книге "На волне Вселенной. Шрёдингер. Квантовые парадоксы", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.