» » » » Иван Сеченов - Рефлексы головного мозга


Авторские права

Иван Сеченов - Рефлексы головного мозга

Здесь можно скачать бесплатно "Иван Сеченов - Рефлексы головного мозга" в формате fb2, epub, txt, doc, pdf. Жанр: Психология, издательство Литагент «АСТ»c9a05514-1ce6-11e2-86b3-b737ee03444a, год 2015. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Иван Сеченов - Рефлексы головного мозга
Рейтинг:
Название:
Рефлексы головного мозга
Издательство:
неизвестно
Год:
2015
ISBN:
978-5-17-088036-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Рефлексы головного мозга"

Описание и краткое содержание "Рефлексы головного мозга" читать бесплатно онлайн.



Книга Ивана Михайловича Сеченова «Рефлексы головного мозга отрыла новую эру объективной психологии. Автор рассматривает важнейшие вопросы психофизиологии и теории познания, анализируя весь спектр явлений – от бессознательных реакций животных до высших форм восприятия у человека. Одним из достоинств книги, несомненно, является то, что она написана простым и доступным языком.






Известно, что на практике счет из глубокой древности и по сие время прикладывается только к собраниям предметов однородных. Считают только деревья в лесу, овец, окна в дому, трубы; но я уверен, например, что очень немногие люди могут тотчас же ответить на вопрос, сколько у человека на голове выдающихся в зрительном отношении особенностей. Всякий знает, как дважды два, что у человека в голове 2 глаза, 1 нос, 1 рот и 2 уха; но до сей минуты многие (я сужу по себе) не знали, что всех особенностей, следовательно, шесть. Причина этому лежит, очевидно, глубже, чем в практических интересах счета, потому что считанием всех особенностей в предметах без разбора, если бы оно продолжалось из века в век, могли бы быть достигнуты, может быть, очень важные результаты. Причина заключается в том, что чем резче отличаются друг от друга перебираемые поочередно глазом или рукой предметы, тем больше шансов вниманию быть отвлеченным от числа в сторону качества, тем счет невозможнее. С другой стороны, чем монотоннее влияния на человека извне, тем правильнее совершаются у него все периодические движения рук, ног и даже дыхания; но стоит какому-нибудь впечатлению внезапно возвыситься из-за среднего уровня, – и гармония периодических движений нарушена. Не указание ли это, что счет мог возникнуть только как гармонический ряд из гармонического же движения?

Теперь читателю должно быть понятно уже без дальнейших объяснений, что в превращении связей в пространстве и времени в количественные отношения сходство играет громадную роль. Превращение это совершается, как мы сейчас видели, при посредстве числа и меры, а в образовании последнего участвует анализ правильно периодических рядов по сходству звеньев, да еще такому полному, что сходство превращается в тождество.

Теперь обратимся к разыскиванию в математике других отзвуков действительности, делающих ее учение приложимым к реальностям.

В ряду человеческих знаний математика стоит особняком и представляет для ума следующую поразительную особенность: обрабатывая свой внечувственный материал обычными умственными приемами исследования – анализом, синтезом и сравнением, она в отличие от опытных наук приходит к непогрешимым выводам: эти дают относительные, а математика – абсолютные истины.

Первым залогом непогрешимости математического мышления считается то, что исходным пунктом рассуждений и действий в этой науке служат аксиомы. Так как большинство последних для людей образованных самоочевидны, т. е. понимаются сразу, без всяких рассуждений и толкований, то им приписывалось внеопытное (или, что то же, внечувственное) происхождение, а способ их восприятий или понимания считался непосредственным, интуитивным.

Чтобы избежать длинных рассуждений по этому предмету, обращаю внимание читателя на следующее. Все самоочевидные истины, во-первых, крайне элементарны, во-вторых, всегда представляют с виду сильно обобщенные выводы, встречающие приложение не только в науке, но и в практической жизни на каждом шагу. Такая приложимость их к опыту, рядом с отсутствием понимания многих аксиом детьми в раннем возрасте, заставляет уже сильно сомневаться в их внеопытном происхождении, хотя и не может, конечно, опровергнуть этой мысли абсолютно. Но вот что ее опровергает. Все признают, что интуиция равнозначна выводу, делаемому как будто без посылок; на этом основании Льюис характеризует ее чрезвычайно метко словами: интуиция есть организованное суждение, желая этим выразить ее сходство с сильно привычным движением, сделавшимся автоматическим, где механизм процесса заучения скрыт быстротой и легкостью действия. Я, со своей стороны, могу привести аналогию еще более подходящую, именно unbewusste Schlusse Гельмгольца при восприятии пространственных отношений детьми в такую пору, когда они еле начинают ходить, не только что рассуждать. Аналогия последних актов с интуициями до такой степени полная, что я, не колеблясь, утверждаю психологическую однозначность интуитивного понимания такой, например, аксиомы, как «часть всегда меньше своего целого», с пониманием следующего предложения: «чтобы видеть предмет, стоящий справа, нужно всегда повернуть или голову, или глаза направо». А между тем кто же станет сомневаться, что последняя из истин, будучи столь же самоочевидной, всеобщей и необходимой, как первая, имеет чувственное происхождение? Недоказываемая в геометрии аксиома «прямая линия есть кратчайшее расстояние между двумя точками» имеет опять несомненно чувственные корни. Смотря на окружающие нас предметы, мы ясно чувствуем разницу (со стороны положения) между теми, которые стоят прямо перед нами, и всеми прочими. Мы привыкли относить положение видимых предметов, не исключая и песчинки, к фронту нашего тела и к положению на этом фронте мысленного циклопического глаза на переносье (нам кажется, что мы смотрим не двумя глазами, а одним, лежащим между ними). Под словами «прямо передо мной» подразумевается прямая линия, и она же подразумевается в акте ходьбы. Если со стороны местности нет препятствий, то мы идем к намеченному предмету всегда по прямой линии, не задаваясь никакими геометрическими соображениями, а по существующему в нашем теле согласованию перемещения ног с фронтом тела и направлением видения – зрительной осью циклопического глаза. Результатом таких жизненных опытов является в уме даже простолюдина следующая самоочевидная для него истина: если бы можно было идти к такому-то предмету прямо, то было бы совсем близко, а то приходится колесить. Далее, в действиях математика на каждом шагу подразумевается как непреложная истина мысль, что одно и то же действие, будучи приложено к величинам однородным, дает результаты, однородные между собой, в приложении к сходным – сходные и т. д. Такие выводы по аналогии целиком взяты из действительности. Если бы сапожник не был непреложно убежден из опытов, что по данной колодке можно шить сапоги равной меры, а по разным сходным колодкам сходные же вещи другой меры, то он отказался бы от своего ремесла.

Другой и самый главный залог непогрешимости математического мышления (при этом прошу читателя держать пока в голове числа и арифметические действия над ними)[48] заключается в идеальной однородности, простоте и неизменяемости по природе того материала, из которого выстроены математические величины. Благодаря таким свойствам материала все действия над ним (по смыслу те же самые, что приписаны выше химику) – анализ, синтез и сравнение – достигают идеальной простоты и дают абсолютно верные результаты. Так, достоверность вывода «дважды два – четыре» более достоверности наступления завтрашнего дня после сегодняшнего, – первая абсолютна, а за достоверность второго вывода говорит лишь опыт людей за многие тысячи лет против одного гадательного завтра. По тем же причинам степени сходств и разниц в математике от тождества к противоположности вполне определенны. Более крайней и простой противоположности, чем «положительное» и «отрицательное» математики, нет ничего на свете.

Все только что перечисленные свойства математических величин, выражающиеся словами: однородность, неизменяемость по природе под влиянием действий, определенность действий и результатов, определенность сходств и разниц, очевидно, заимствованы от фактов действительности, с тем лишь различием от последних, что в математических величинах все эти свойства сведены, так сказать, до идеала, а в реальных вещах они представляют лишь приближения к идеалу. Кроме того, вся характеристика количества взята мной от чисел и арифметических действий над ними; а арифметика усваивается в очень ранней юности, т. е. почвой, воспитавшейся исключительно на реальностях.

Однако мысль математики не останавливается на этой первоначальной ступени развития, и от конечного она переходит к бесконечному, от неизменного к изменяющемуся.

Если на бумаге провести черту карандашом или пером в каком-либо направлении, то под микроскопом, при достаточно сильном увеличении, контуры черты никогда не окажутся ровными, а всегда мелко зазубренными. Причина понятна. Первое прикосновение пера или карандаша к бумаге дает точку некоторых размеров; следовательно, передвижению их должен соответствовать непрерывный ряд точек, тем более зернистый, чем точка крупнее и передвижение ее медленнее. Еще большая неправильность черты получилась бы в случае, если бы поступательное движение точки было связано с вращениями пишущего снаряда около оси и размеры точки не во всех направлениях были одинаковы. Дело другого рода, если вообразить себе точку, не имеющую размеров, – тогда она могла бы двигаться с какой угодно медленностью и с какими угодно вращениями, – путь ее во всяком случае будет линией, однородной по длине, без размеров в толщину. Такая точка будет математической точкой, а путь ее передвижения – математической линией. То и другое более чем внечувственно – то, что называется фикцией, реальной невозможностью; но зато отношение между точкой и линией стало строго определенным со стороны пространственной. Пример этот показывает, какими простыми рассуждениями и опытами можно дойти до фикций, когда дело идет о крайне простых отношениях. С другой стороны, легко показать, что обе фикции приложимы к реальностям, что опять говорит в пользу происхождения их из реальностей. Так, центр тяжести тела есть понятие, стоящее уже на границе реальности, а между тем таким центром может быть только математическая точка. Другой пример. Столяр, измеряя размеры какой-либо поделки ниткой, очень ясно понимает, что тут дело не в толщине нитки, а только в ее длине. Представление о контуре предмета тоже эквивалентно математической линии: глаз видит контур как границу между фигурой тела и окружающим ровным фоном; но куда отнести эту границу как линию: к веществу тела или к окружающему фону? Одна математическая линия, без размера в толщину, выводит ум из затруднения.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Рефлексы головного мозга"

Книги похожие на "Рефлексы головного мозга" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Иван Сеченов

Иван Сеченов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Иван Сеченов - Рефлексы головного мозга"

Отзывы читателей о книге "Рефлексы головного мозга", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.