» » » » Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре


Авторские права

Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре

Здесь можно скачать бесплатно "Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре" в формате fb2, epub, txt, doc, pdf. Жанр: Биографии и Мемуары, издательство Эксмо, год 2013. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре
Рейтинг:
Название:
Григорий Перельман и гипотеза Пуанкаре
Издательство:
Эксмо
Год:
2013
ISBN:
978-5-699-44145-7
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Григорий Перельман и гипотеза Пуанкаре"

Описание и краткое содержание "Григорий Перельман и гипотеза Пуанкаре" читать бесплатно онлайн.



Имя питерского математика Григория Перельмана не сходит с новостных полос. Еще бы — открытие сделал, а положенный миллион все не берет. За обсуждением денег и странностей математика как-то совсем не замеченным остался вопрос: «Так что же открыл такого великого Перельман, что это вызвало такую шумиху и столь высоко было оценено мировой общественностью?» А открытие его действительно значимо: доказана гипотеза Пуанкаре (сейчас это теорема Пуанкаре-Перельмана), справиться с которой лучшие умы не могли более 100 лет. Из этой теоремы вытекает масса удивительных выводов в космологии, квантовой механике, философии и даже религии.  






Рис. 33. Ричард Гамильтон, профессор математики Колумбийского университета (США)

«Гамильтон, сын врача из Цинциннати, опровергал сложившийся стереотип математика как засушенного "ботаника". Дерзкий и непочтительный человек, он ездил верхом, занимался виндсерфингом и менял подружек как перчатки. В его

-81-

жизни математика занимала место еще одного хобби. К сорока девяти годам у него сложилась репутация превосходного лектора, но количество его опубликованных работ было относительно невелико, если не считать базовых статей о потоках Риччи; кроме того, у него практически не было учеников. Перельман прочел статьи Гамильтона, после чего отправился послушать его лекцию в ИПИ. После лекции Перельман поборол свою застенчивость и поговорил с Гамильтоном.

"Мне было очень важно расспросить его кое о чем, — вспоминал Перельман. — Он улыбался и был очень со мной терпелив. Он даже рассказал мне пару вещей, которые были им опубликованы только несколько лет спустя. Он, не задумываясь, делился со мной. Мне очень понравились его открытость и щедрость. Могу сказать, что в этом Гамильтон был не похож на большинство других математиков".

"Я работал над разными темами, хотя время от времени я мысленно возвращался к потокам Риччи, — добавил Перельман. — Не нужно быть великим математиком, чтобы увидеть, что потоки Риччи могут оказаться полезными в решении проблемы геометризации. Я чувствовал, что мне не хватает знаний. Я продолжал задавать вопросы…"

В 1996 году он написал Гамильтону длинное письмо, обозначив в нем свою идею — с надеждой на сотрудничество. "Он не ответил, — сказал Григорий. — И я решил работать один"».

Сильвия Насер, Дэвид Грубер. Многообразная судьба. Легендарная проблема и битва вокруг ее решения

Между тем после лекционного турне по американским университетам Перельман вернулся в Россию, где начал трудиться над решением проблемы особенностей потоков Риччи и доказательством гипотезы геометризации (а вовсе не над гипотезой Пуанкаре) втайне от всех. Решая уравнение потока Риччи (математически это дифференциальное уравнение в частных производных), Григорий Яковлевич получил очень интересные результаты, позволяющие деформировать риманову метрику на многообразии. Однако немного позже он получил довольно неприятный результат, заключающийся в том, что в процессе деформации возможно образование сингулярностей — точек, в которых кривизна стремится к бесконечности. «Сингулярные решения» очень не любят физи-

-82-

ки, обоснованно считая, что их математические модели просто перестают работать в данных точках и ту же деформацию невозможно продолжить. Первый шаг в «войне с сингулярносгями» состоит в их классификации в трехмерном ориентированном случае. Затем при подходе к сингулярности поток останавливают и производят «хирургию» — выбрасывают малую связную компоненту или вырезают «шею», а полученные две дырки заклеивают двумя шарами так, что метрика полученного многообразия становится достаточно гладкой, — после чего продолжают деформацию.

Классификация сингулярностей позволяет заключить, что каждый «выброшенный кусок» диффеоморфен сферической пространственной форме. Процесс, описанный выше, называется «поток Риччи с хирургией».

Рис. 34. Планетарная поверхность как аналог двумерной сферы — одного из основных элементов доказательства теоремы Пуанкаре — Перельмана

Исходя из общепризнанных математических стандартов (да и общих научных), решение проблемы Пуанкаре, предложенное Перельманом, выглядело достаточно необычно. Его форма была конспективно краткой и в то же время фантастически емкой, логика построений поражала филигранной точностью математических высказываний, а сами они были до предела сжаты. Более того, доказательство не имело прямых упоминаний гипотезы Пуанкаре и содержало массу результатов, не имевших отношения к основной теме. Все это вызвало

-83-

в математическом мире шквал комментариев, многие из которых, особенно со стороны китайской математической школы, трудно было назвать объективными. Уже несколько лет спустя анализ доказательства Перельмана, которое занимало всего лишь десятки страниц, насчитывал стостраничные тома, а общее количество оценок и комментариев не уместилось бы и в тысячестраничном фолианте. Между тем различные команды экспертов (надо заметить, что лишь немногие математики имели достаточный уровень для оценки работ Перельмана) раз за разом подтверждали правильность доказательства, предложенного российским гением, при этом не было найдено ни одной погрешности логических построений. В математическом сообществе постепенно зрело взвешенное мнение: Григорию Яковлевичу Перельману действительно удалось решить проблему Пуанкаре и теперь его доказательство вполне можно называть теоремой Пуанкаре — Перельмана.

В ноябре 2002 года Григорий Яковлевич Перельман закончил выкладывать доказательство гипотезы Пуанкаре в Интернете на сайте так называемого электронного архива, чем он занимался на протяжении восьми месяцев, опубликовав три оригинальные работы.

Рис. 35. Топологические метаморфозы (по мотивам М. Эшера)

-84-

стр. отсутствует

-85-

который в эпоху Ферма разработан не был. Поэтому усилия математиков были направлены не на решение этого частного случая, а на построение нового математического подхода, который способен справляться с такими задачами.

Рис. 36. Бесконечность топологической эволюции

«В 1995 году Гамильтон опубликовал статью, в которой обсуждал некоторые идеи по решению задачи Пуанкаре. Прочитав эту статью, Перельман понял, что Гамильтон нисколько не преуспел в преодолении главного препятствия — решении проблемы "перешейков" и "сигар". "Сначала 1992 года он, похоже, не продвинулся ни на йоту, — рассказал нам Перельман. — Возможно, он застрял еще раньше". Тем не менее Перельману казалось, что он знает, как обойти этот камень преткновения».

Сильвия Насер, Дэвид Грубер. Многообразная судьба. Легендарная проблема и битва вокруг ее решения

Суть подхода состоит в том, что для геометрических объектов можно определить некоторое уравнение «плавной эволюции», похожее на уравнение ренормализационнои группы в теоретической физике. Исходная поверхность в ходе этой эволюции будет деформироваться и, как показал Перельман,

-86-

в конце концов плавно перейдет именно в сферу. Сила этого подхода состоит в том, что, минуя все промежуточные моменты, можно сразу заглянуть в бесконечность, в самый конец эволюции, и обнаружить там сферу.

Гипотеза Пуанкаре считалась одной из величайших математических загадок, а ее решение — важнейшим достижением в математической науке: оно моментально продвинет вперед исследования проблем физико-математических основ Мироздания. Виднейшие умы планеты прогнозировали ее решение лишь через несколько десятилетий, а Институт математики Клэя в Кембридже, штат Массачусетс, внес проблему Пуанкаре в число семи наиболее интересных нерешенных математических задач тысячелетия, за разгадку каждой из которых была обещана премия в один миллион долларов.

-87-

Гл. 3 Человек и ученый

«Наша жизнь есть то, что мы о ней думаем».

Марк Аврелий

«Наука наверняка погибла бы без поддержки трансцендентальной веры в истинность и реальность и без непрерывного взаимодействия между научными фактами и построениями, с одной стороны, и образным мышлением — с другой».

Герман Вейль. Философия математики и естественных наук

«Я полагаю, что, если где-то допустил ошибку и кто-то другой смог бы предложить корректное доказательство, опираясь на мои результаты, меня бы это только порадовало…

Если все честны, то обмен идеями — совершенно естественное явление».

Г. Я. Перельман

Сразу же после опубликования препринтов Перельмана специалисты приступили к проверке ключевых моментов его теории, и ни одной ошибки до сих пор не найдено. Более того, за прошедшие годы несколько коллективов математиков смогли впитать предложенные Перельманом идеи до такой степени, чтобы приступить к записыванию полного доказательства набело.

В 2006 году стали появляться работы, в которых был дан подробный вывод опущенных моментов в доказательстве Перельмана. Затем в «Азиатском математическом журнале» была опубликована 327-страничная статья китайских математиков, озаглавленная «Полное доказательство гипотез Пуанкаре и геометризации — приложение к теории Гамильтона — Перельмана о потоках Риччи». Сами авторы не претендуют на абсолютно новое доказательство, а лишь утверждают, что подход Перельмана действительно работает. Неожиданный поворот в этой истории наступил после статьи китайских математиков Сипин Чжу и Хуайдун Цао под названием «Полное доказатель-


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Григорий Перельман и гипотеза Пуанкаре"

Книги похожие на "Григорий Перельман и гипотеза Пуанкаре" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Олег Арсенов

Олег Арсенов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре"

Отзывы читателей о книге "Григорий Перельман и гипотеза Пуанкаре", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.