» » » » Льюис Кэрролл - Придирки оксфордского прохожего


Авторские права

Льюис Кэрролл - Придирки оксфордского прохожего

Здесь можно скачать бесплатно "Льюис Кэрролл - Придирки оксфордского прохожего" в формате fb2, epub, txt, doc, pdf. Жанр: Юмористические стихи. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Придирки оксфордского прохожего
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Придирки оксфордского прохожего"

Описание и краткое содержание "Придирки оксфордского прохожего" читать бесплатно онлайн.



Введите сюда краткую аннотацию






2. Полярная, т. е. посредством 2-х полюсов [35], «Северного и Южного». Это очень неопределённая система представления, из тех, на которые нельзя с уверенностью положиться.

3. Трёхлинейная, т. е. посредством линии, проводимой сразу в 3-х различных направлениях. Такая линия обычно обозначается тремя буквами WEG [36].

Что идея Представления была известна древним, тому в изобилии имеются примеры у Фукидида, по словам которого любимым возгласом поощрения во время состязания трирем было то трогательное поминание Полярных Координат, которое всё ещё слышится во время гонок и в наши дни: «ρ5, ρ6, cos φ — они победили!» [37]



ЧАСТЬ II. Динамика партийной горячки

Логически точки подразделяются на основании их Гениальности и Речистости.

Гениальность — это классификация более общего порядка и как таковая в сочетании с Отличительными Свойствами (т. е. отличиях во мнении) продуцирует Речистость. Последняя снова естественным образом подразделяется по трём рубрикам.

Точки, относящиеся к высшему порядку Гениальности, называются «компетентными», или «просвещёнными».


Определения I

Иррациональный член — это радикал, значимость которого не может быть точно установлена. Данный класс включает довольно обширное количество точек.

II

Индекс указывает на степень, или силу, в которую точка возведена. Он состоит из двух букв, помещаемых справа от символа, представляющего точку. Так, «АА» означает нулевую степень, «ВА» — первую степень и т.д., пока не дойдём до «МА» [38] — второй степени (промежуточные буквы алфавита указывают дробные части степени); последние два обыкновенно привлекаемых индекса — это «RA» [39] (едва ли стоит напоминать читателю эту прекрасную строку из «Принцессы»: «Разоденься же, Дина, как пышный RA») и «SA». Данный символ указывает на 360-ю степень, каковая означает, что точка, служащая предметом обсуждения (составляющая, в свою очередь, 1/7 часть функции (Е + R) — «Очерки и рецензии»), претерпела полное обращение, и что результат равняется нулю.

III

Момент есть произведение массы на скорость. Желание досконально обсудить этот предмет уведёт нас слишком глубоко в теорию vis viva [40], поэтому нам следует удовлетвориться упоминанием одного только факта: вполне просвещённые Точки ни за что не упустят ни единого момента. Едва ли необходимо цитировать широко известный пассаж: «Каждый момент, который только можно отхватить от академических обязанностей, посвящается делу дальнейшего повышения популярности Канцлера Казначейства». (Кларендон, «История Великого мятежа» [41].)

IV

Пара состоит из движущейся точки, возведённой в степень МА и объединённой с тем, что технически называется «лучшей половиной». Основные свойства Пары следующие: 1) Она легко может быть переведена по служебной лестнице из пункта А в пункт В; 2) какой бы силой поступательного движения (часто значительной) ни обладала необъединённая точка, эта сила полностью утрачивается после того, как Пара сформирована; 3) как правило, две силы, составляющие Пару, действуют в противоположных направлениях.


О Дифференцировании

Дифференцирование производит на Точку замечательное действие: первая производная зачастую имеет большую влиятельность, чем исходная Точка, а вторая — меньшую просвещённость.

Например, пусть L — это Начальник, а S — Воскресенье; тогда LS — Воскресный Начальник (точка, не имеющая особенной влиятельности). Дифференцируя один раз, получаем LSD [42], влиятельную функцию большой ценности. Сходным образом можно показать, что если взять вторую производную от просвещённой Точки (иначе говоря, возвести её в степень DD [43]), то просвещённость круто понизится. Этот эффект значительно усиливается с добавлением С [44]: в этом случае просвещённость часто полностью пропадает и Точка становится консервативной.

Следует заметить, что где бы ни применялся символ L для обозначения начальника, его следует предварять знаком ± как указанием на то, что его действие иногда положительное, а иногда отрицательное: некоторые точки данного класса приобретают свойство увлекать остальных за собой (таков воинский начальник), а другие отвращать их (такова передовица “Таймс” [45]).


Предложения Предложение I. Задача

Дать оценку данному Экзаменатору

Пример. На финальном экзамене А проводит 10 партий в вист и выходит с присвоением 3-го разряда; В проводит Экзаменаторов и выходит с присвоением 2-го разряда. Определить ценность Экзаменаторов в терминах виста. Кроме того, дать им оценку в выражениях, на экзамене неприменимых.

Предложение II. Задача

Оценить утраты и приобретения

Пример. Дано: записной Подсказчик результата забегов в дерби сообщил о трёх различных предполагаемых победителях трём различным участникам ставок; дано также, что ни одна из названных лошадей не заняла призового места. Найти совокупную для означенных трёх участников ставок утрату 1) денежных средств, 2) самообладания. Найти также и того Подсказчика. Возможно ли последнее в принципе?

Предложение III. Задача

Прикинуть направление проводимой линии

Пример. Доказать, что определение линии по Уолтону совпадает с определением по Сальмону, только берутся они за это дело с противоположных концов. Считая, что такая линия разделена методом Фроста, дать ей справедливую оценку по Прайсу [46].


Предложение IV. Теорема

Конец (т. е. «произведение крайних членов») оправдывает (т. е. «приравнивается к») середину [47].

К этому Предложению в силу очевидных причин пример не прилагается.


Предложение V. Задача

Продолжить данный ряд

Пример. А и В, примкнувшие соответственно к Четвёрке и Пятёрке, занимают столько же постов, сколько всегда находятся в распоряжении Шестёрки и Семёрки. Найти вероятное количество чтений, проведённых А и В, пока Восьмёрка на подходе.


Перейдём к иллюстрации этого торопливого наброска Динамики Партийной Горячки. Предложим здесь одну замечательную Задачу, от решения которой зависит вся теория Представления, а именно: «Удалить данную Касательную от данного Круга, а взамен привести в соприкосновение с ним другую».

Чтобы решить поставленную задачу алгебраическими средствами, лучше всего представить такой круг в тангенциальных координатах, где один тангенс задают линии WEG и WH, а другой — линии WH и GH [48]. Когда этот шаг будет выполнен, станет видно, что удобнее спроецировать линию WEG в бесконечность. Полностью эту процедуру мы здесь не даём, поскольку она требует введения множества путанных детерминантов.


Предложение VI. Задача

Удалить данную Касательную от данного Круга, а взамен привести в соприкосновение с ним другую.



Пусть UNIV будет Большим Кругом, центр которого находится в точке О (а буква V, разумеется, лежит в верхней точке окружности) [49], и пусть WGH — это треугольник, две стороны которого, WEG и WH, соприкасаются с нашим кругом, а GH (называемая свободомыслящими математиками «основанием»), с ним не соприкасается (см. фиг. 1). Требуется нарушить соприкасаемость WEG, а вместо неё привести в соприкосновение с кругом GH.

Пусть на точку I приходится наибольшая частота озаряемости по сравнению с остальной частью данного круга, тогда как на точку E — максимум просвещённости [50] по сравнению с остальной частью треугольника. (Понятно, что абсолютная величина этого максимума изменяется обратно квадрату расстояния точки Е от О.)

Пусть WH абсолютно фиксирована и всегда остаётся в контакте с кругом, и пусть также фиксировано направление OI.

Теперь, пока WEG сохраняет совершенно прямой курс, GH не имеет возможности войти в соприкосновение с кругом, но если сила озарения, действующая вдоль OI, вынудит WEG отклониться (фиг. 2), то последует её излом и поворот GH; WEG перестанет касаться круга, а GH немедленно придёт с ним в соприкосновение. Доказательство окончено.


Теория, привлечённая для решения вышепредложенной Задачи, в настоящее время вызывает много споров, и от сторонников её требуют показать, где та фиксированная точка, или locus standi, в которой они предполагают выполнить необходимый излом. Чтобы прояснить этот пункт, мы должны обратиться к греческому оригиналу и напомнить нашим читателям, что надёжная точка, или locus standi, в данном случае есть ἄρδις (или ἅρδις [51] в соответствии с современным употреблением), и поэтому не может быть приписана WEG. В ответ на это недруги настаивают, что в подобных нашему случаях одно только словечко нельзя рассматривать как удовлетворительное объяснение, даже и ἁρδέως [52].


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Придирки оксфордского прохожего"

Книги похожие на "Придирки оксфордского прохожего" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Льюис Кэрролл

Льюис Кэрролл - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Льюис Кэрролл - Придирки оксфордского прохожего"

Отзывы читателей о книге "Придирки оксфордского прохожего", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.