Арнольд Минделл - Квантовый ум. Грань между физикой и психологией

Все авторские права соблюдены. Напишите нам, если Вы не согласны.
Описание книги "Квантовый ум. Грань между физикой и психологией"
Описание и краткое содержание "Квантовый ум. Грань между физикой и психологией" читать бесплатно онлайн.
Большинство ученых даже не подозревает, что физика и математика основываются на том, что было всегда известно психологии и шаманизму, – на способности любого человека осознавать едва заметные, сноподобные события. Эта книга посвящена нашему процессу осознания и его непостижимой способности участвовать в создании реальности. В ней обсуждается тонкое взаимодействие природы с самой собой на заднем плане нашего восприятия, создающее наблюдаемый мир.
Мы ищем только наиболее вероятный смысл чего-либо, его действительное числовое значение. Метафорически говоря, глядя только на действительное значение опыта, мы получаем ответы в реальности, но игнорируем чувственный опыт, подобный сновидению, и процесс отражения, скрытые за реальностью. Как мы видели в начале нашего путешествия, общепринятая реальность подобна дереву, корни которого уходят в необщепринятую, или чувственную, сферу.
Например, допустим, вы рассказываете мне, что видели сон о дереве. Если я спрошу вас: «Что это означает в общепринятой реальности?» – вам придется дать мне его наиболее вероятное действительное значение. Мой вопрос о дереве маргинализирует опыт отражения и конъюгации. Вместо этого, я мог бы попросить вас осознанно развертывать то сновидение, снова представляя его себе и прослеживая его развертывание в виде образов и других переживаний.
Развертывание отличается от расспрашивания или интерпретирования. Развертывание посредством осознанного сновидения отдает должное иррациональному – переживаниям, которые порождают сознание. Опыт развертывания или конъюгации дает нам ощущение того, что в основе всей реальности лежит сновидение. Вопрос только в том, что «означает» сновидение, обращается только к его ОР-атрибутам и игнорирует его удивительные корни. По контрасту, конъюгация, или осознанное сновидение, сосредоточивается на НОР-опыте бытия деревом. Такие переживания – самое близкое, насколько мы можем подойти к основам реальности.
Понятно, что физика сосредоточивается главным образом на ОР и действительных числах. В конце концов, физика определяет себя как изучение общепринятых восприятий. Но наука забыла, что ее определение носит самоограничивающий характер и маргинализирует психологический опыт. Физика избегает изучения необщепринятых аспектов наблюдения, вроде личности наблюдателя или чувств, которые вызывает объект наблюдения. Физика теряет связь со своей математикой, своими комплексными числами, своими волновыми функциями и призрачной реальностью позади ОР. Однако изучение призрачных сфер не утеряно: там, где заканчивается современная физика, начинаются традиционный шаманизм и психология.
Мы увидели, что закономерности, обнаруживающиеся в психологии восприятия и в шаманском опыте, согласуются с принципами математики и, как мы теперь знаем, физики. Это соответствие указывает на единое поле – подобную сновидению субстанцию опыта, которая лежит в основе жизни, в основе психологии и физики, электронов и их наблюдателей, всех нас. Это поле – основа развертывания 1, 2, 3 и бесконечности.
В дальнейшем мы более подробно узнаем о том, как осознанное сновидение кодируется внутри. То же осознанное сновидение, что порождает сознание и реальность в психологии, дает нам основу для понимания невидимой сферы квантовых объектов и мира, в котором мы живем, – основную субстанцию Вселенной.
Примечания
1. Чтобы это проверить, вообразите, что вы кладете на пол линейку между своими ногами и зеркалом. Если вы стоите в комнате в точке a + bi и смотрите прямо вниз, туда, где кончаются ваши ступни, то сперва увидите деление линейки «100 см». Перемещая взгляд по линейке в направлении зеркала, вы будете видеть деления «95», «94», «93» и так далее, пока не дойдете до деления «1 см» и, наконец, до стены.
Затем, если зеркало такое хорошее, что вы едва его замечаете, вы увидите в зеркале еще одну линейку. Эта линейка представляет собой отражение той, что лежит у ваших ног, и счет ее делений идет в обратном направлении.
Прослеживая взглядом эту линейку, вы отсчитываете 1 см, потом 2, 3, 4 и так далее и, наконец, 100 см. Тогда, посмотрев вверх, вы увидите в зеркале самого себя, смотрящего вам в глаза! Ваше зеркальное отражение выглядит в точности как вы – с той лишь разницей, что вы находитесь на +100 см, а ваш двойник на -100 см.
Между вами и вашим двойником есть и другие различия. Однако пока давайте думать только о том, что вы находитесь на +100 см, а ваш двойник на -100 см.
2. В примечаниях 2, 3 и 4 обсуждаются более удивительные характеристики комплексных чисел. Вы можете выражать геометрию комплексных чисел тригонометрически, то есть в терминах углов.
Примем, что 9 – это угол между R и осью х, как показано ниже на рис. 8.4 (tan означает тангенс, cos означает косинус; tan(θ) означает тангенс угла 9).
Рис. 8.4 Комплексное число, выраженное в терминах углов Более подробно о комплексных числах можно прочитать в книгах Руэла В. Чарчхилла «Комплексные переменные и приложения» (Ruel V. Churchill. Complex Variables and Applications) и Ханса Швердтфегера «Геометрия комплексных чисел» (Hans Schwerdtfeger. Geometry of Complex Numbers).
Математики называют [cos(θ) + isin(θ)] угловым множителем комплексного числа и в соответствии с законами алгебры и тригонометрии обозначают его как еiθ. Число е может использоваться для сокращения длинных тригонометрических выражений, что делает вычисления простыми. Это отчасти связано с той особенностью показательных функций, что для двух углов θ, и θ2 мы имеем
отсюда z = R[cos(θ) + isin(θ)] = Reiθ.
3. Приведенное выше уравнение z = K[cos(θ) + isin(θ)] = Кeiθ означает, ни много ни мало, что z имеет периодическое поведение, поскольку при возрастании угла 9 cos(θ) и isin(θ) претерпевают периодические волнообразные изменения. Иными словами, имеются две волны – одна действительная, а другая мнимая, или не совпадающая по фазе с действительной на 900. См. рис. 8.5
Рис. 8.5. Периодическое движение x и у
С показательными функциями (экспонентами) иметь дело легче, чем с синусами и косинусами. Поэтому в физике для представления колебаний постоянно используются комплексные числа в форме ei(θ1+ θ2) ei(θ1+ θ2). Для представления колебаний, которые можно измерять, например качания маятника, используется только действительная часть числа z. Мнимым элементом пренебрегают.Хорошее элементарное обсуждение математики и волн для ученых можно найти в фейнмановских «Лекциях по физике» (том I, гл. 23).Еще один интересный аспект действительных и мнимых чисел состоит в том, что действительный и мнимый аспекты z подобны двум разным измерениям реальности, двигающимся вместе, но не вполне вместе. Вообще, если действительная и мнимая оси вращаются, мы можем видеть, что ось мнимого числа Y всегда отстает от действительной оси X на угол 90°, как показано на рис. 8.6.
Рис. 8.6. Вращение комплексной плоскости на 90 градусов
По аналогии можно сказать, что воображаемый мир всегда находится в другом измерении по отношению к реальному или, наоборот, что при возрастании 9 оси X и Y выглядят как две волны – одна впереди, а другая чуть позади, – как если бы они были барабанами, звук которых отдается эхом «бум бум», пауза, «бум бум», пауза, «бум бум» и так далее. Две волны, не совпадающие по фазе друг с другом, графически показаны на рисунке выше. Это аналогично ритму музыки на заднем плане нашего переживания.
В одной из последующих глав я покажу, что в квантовой физике периодическое поведение комплексных чисел (волновое уравнение) используется для описания невидимого состояния материальной системы. Состояние физической системы, например маленького шарика, элементарной частицы или человека, в каждой точке пространства и времени может быть представлено комплексным числом.
4. Если мы проводим линию R из центра к точке a + ib, то она выглядит как путь между этим комплексным числом и центром комплексной плоскости. См. рис. 8.7.
Рис. 8.7. Линия R на комплексной плоскости Какова длина R? R представляет собой длинную сторону треугольника с двумя другими сторонами а и b. R – это длинная сторона (гипотенуза), b – вертикальная сторона (катет) и a – горизонтальная сторона (катет).
Рис. 8.8. R – это часть прямоугольного треугольника
Греческий ученый Евклид заимствовал информацию у вавилонян и открыл, как можно было бы измерить R, зная а и b. Оказывается, что если есть две стороны треугольника, которые перпендикулярны друг другу, формула Евклида говорит, что квадрат длинной стороны, R, равен сумме квадратов меньших сторон. То есть
R2 = а2 + b2
это формула Евклида для прямоугольных треугольников[13].
Таким образом, умножение комплексного числа на его конъюгат дает нам R – расстояние точки от центра.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Квантовый ум. Грань между физикой и психологией"
Книги похожие на "Квантовый ум. Грань между физикой и психологией" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Арнольд Минделл - Квантовый ум. Грань между физикой и психологией"
Отзывы читателей о книге "Квантовый ум. Грань между физикой и психологией", комментарии и мнения людей о произведении.