» » » » Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ


Авторские права

Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ

Здесь можно скачать бесплатно "Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Детская литература, год 1967. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ
Рейтинг:
Название:
ВОЛШЕБНЫЙ ДВУРОГ
Издательство:
Детская литература
Год:
1967
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "ВОЛШЕБНЫЙ ДВУРОГ"

Описание и краткое содержание "ВОЛШЕБНЫЙ ДВУРОГ" читать бесплатно онлайн.



В этой книге в занимательной форме рассказывается немало интересного для тех, кто любит точные науки и математику. Читатель узнает о развитии математики с ее древнейших времен, о значении математики в технике, а особенно об одной из важнейших отраслей математики - так называемом математическом анализе. На доступных примерах читатель познакомится с элементами дифференциального и интегрального исчислений. В книге также говорится о неевклидовых геометриях и о той, которая связана с открытиями великого русского геометра П. П. Лобачевского. Читателю предлагается немало занимательных задач, многие из которых сопровождаются подробным разбором.

-

Для среднего и старшего возраста.






y3 + py + q = 0,

а формулу Кардана напишем в таком сокращенном виде:

то корни нашего уравнения будут таковы:

y1 = A + B;

y2 = аαА + α2В;

y3 = аα2А + α2В;

- Все-таки, - вымолвил опасливо Илюша, - это получается не так-то просто... С квадратным одна минута, а тут...

- Есть и более сложные задачи, а у сложных задач и способы решения довольно хитрые. Да это еще не все! А дальше способен слушать? А то закроем заседание нашей комиссии - и по домам!

- Нет, нет, - взмолился Илюша, - мне хочется все-таки до конца дослушать!

- 448 -

- "До конца"! -повторил ворчливо Радикс. - Ты думаете, у этой штуки есть конец? Что касается меня, то я в этом отнюдь не уверен. Так еще немножко проползти можно...

- Поползем! - ответил Илюша, вздохнув потихонечку.

- Воля твоя, - отвечал Радикс, - только потом чтобы не жаловаться, что, дескать, замучили!

- Не буду жаловаться! - храбро заявил Илья.

- Тогда слушай дальше, - продолжал Радикс.

- Слушаю!..

- В конце восемнадцатого века замечательный французский математик Лагранж пытался разобраться во всех способах решения уравнений третьей и четвертой степеней. После того как Эйлер нашел сочетания значений двух кубических корней в формуле Кардана, чтобы получить значения всех трех искомых корней, изучение алгебры комплексных чисел сильно двинулось вперед. Лагранж обратил внимание на то, что любой из двух кубических радикалов в формуле Кардана можно выразить через три корня уравнения при помощи следующей формулы (в зависимости от того, какой корень считается первым, какой - вторым, какой - третьим):

1/3(x1 + αx2 + α2x3)

- Совсем я запутался! - с огорчением пробормотал Илья. - Чем эта формула поможет? Откуда взять корни, когда я еще не решил уравнения? Значит, надо сперва воспользоваться формулой Кардана. Какой смысл в этой формуле?..

- Видите ли, - вмешался Мнимий, - вы правы в том отношении, что 13 деле разыскания корней эта формула помочь не может. Но чтобы представить себе, как связаны корни кубического уравнения с его коэффициентами, она в высшей степени полезна.

- Опять не понимаю! - снова огорчился мальчик. - Ведь мы же знаем, какие для Кардановой формулы делали два раза подстановки! Разве из этого нельзя вывести, какие получаются соотношения между корнями и коэффициентами?

- Того, что мы знаем о наших подстановках, еще мало.

Потому что те подстановки, которые годятся для кубического уравнения, не подходят для уравнения четвертой степени, а следовательно, это способ не общий. Кроме того, пока самый способ решения нельзя проверить - или, как говорится, проанализировать, - невозможно подойти и к рассмотрению всего вопроса в целом об алгебраических уравнениях. Ведь мало еще догадаться, каково решение, надо дознаться, почему оно такое, а не иное.

- 449 -

- Возьмем квадратное уравнение, - предложил Радикс, - хорошо тебе известное. Что ты скажешь, если я предложу тебе для него такую формулу? Ты с ней согласишься?

x = 1/2[(x1 + x2) ± (x1 - x2)]

- Д-да... - сказал Илюша неуверенно. - То есть если припомнить общую формулу квадратного уравнения

(x1 + x2)(x1 - x2) = 0,

потом открыть в ней скобки

x2 - (x1 + x2)x + x1x2 = 0,

а затем применить к такому выражению всем известную формулу, для решения квадратного уравнения, то как раз и придешь к твоей формуле. И действительно, она показывает, как формула решения связана с корнями. Но ведь в квадратном уравнении все так просто!

- Боюсь, - вымолвил Мнимий, - что вас пугают эти самые альфы в формуле Лагранжа. Не так ли? А ведь мы о них недавно говорили... Вспомните-ка!

- Говорили...

- А что именно?

- Что с их помощью получаются все значения корней из комплексного числа...

- Разве? - сказал удивленный Радикс. - Как же это возможно? Мыслимое ли это дело?

Илюша посмотрел на своего друга укоризненно.

Что-то очень маленькое и беленькое вдруг упало у ног Илюши, а потом пошел целый снег из этих маленьких беленьких... Одна штучка упала Илюше прямо на руку, и он увидал, что на ладошке у него лежит крохотная беленькая альфа. А кругом так и сыплются все новые и новые маленькие беленькие альфы...

А Мнимий посмотрел на эту альфообразную метель и признался:

- А ведь в самой своей сущности я тоже альфа!

Илюша взглянул на него и сказал:

- Когда мы разбирали пример Бомбелли, я, кажется, понял, что под корнями в формуле Кардана стоят сопряженные комплексные числа... Ну вот, отсюда и альфы, чтобы получать один за другим все значения корня из комплексного числа! Теперь я как будто разобрался. Значит, Лагранж дал формулу Кардана но просто в виде результата двух подстановок, а так, как она складывается из самых корней.

- 450 -

И тут альфовый снежок стал стихать.

- Так-с... - произнес наставительно Мнимий. - Это похоже на дело. Но теперь на минутку давайте снова вернемся к квадратному уравнению. Вы этого не бойтесь! Поверьте, что все те крупные ученые, которые это разбирали, тоже не раз вспоминали о квадратном уравнении. Так вот вам еще один вывод для формулы решения квадратного уравнения, причем чрезвычайно полезный. Нам ведь хорошо известно, что по формулам Виеты сумма корней квадратного уравнения (х2 + рх + q = 0) равняется коэффициенту при неизвестном в первой степени с обратным знаком, то есть:

х1 + х2 = -р.

Возьмем еще одно выражение, составленное из тех же корней, только не сумму, а разность, и возведем ее в квадрат:

(x1 - x2)2 = (x1 + x2)2 - 4x1x2 = p2 - 4q

Отсюда сразу можно написать, что

x1 + x2 = - p

x1 - x2 = ± √( p2 - 4q)

Сложим эти два равенства и сейчас же получим известную формулу решения квадратного уравнения. Не так ли?

- Так, конечно, - отвечал Илюша. - Из суммы этих выражений один корень получаем, а из их разности - другой.

Все понятно. Выходит, что мы этим способом получили два уравнения первой степени. Раз нам нужно два решения, то мы можем к ним прийти через два уравнения первой степени... То есть я не знаю, всегда ли так должно получаться, но во всяком случае с квадратным уравнением именно так и получается...

- Допустим... - отвечал Мнимий. - Но лучше сказать, пусть так будет вплоть до первого противоречия с этим предположением либо допущением.

- А если встретится противоречие?

- 451 -

- Тогда посмотрим. Попробуем его обойти, а если не удастся, придется видоизменять наше допущение. Когда Лагранж, пытаясь обнаружить общее правило из разных решений алгебраических уравнений, нашел наконец свою замечательную формулу, он заметил, что три корпя в ней надо брать в некотором вполне определенном порядке, а это натолкнуло его на новые плодотворные опыты. Если взять все три корпя кубического уравнения, то есть х1, х2 и х3, то, если их брать не только в той последовательности, которая оказалась необходимой - вместе с нашими помощницами, альфами, - но и во всех остальных...

- Интересно, - заметил Радикс, - а сколько будет этих всех остальных?

И оба, Радикс и Мнимий, внимательно посмотрели на нашего героя, Илью Алексеевича.

- Остальных последовательностей корней? - неуверенно повторил мальчик. - Не понимаю вопроса... Или, может быть, о порядке вы говорите? Тогда вы меня о перестановках спрашиваете?..

Не отвечая ни слова, Радикс и Мнимий все так же пристально смотрели на Илюшу, который чувствовал себя под их взглядами не в своей тарелке.

- ... и уж если это так, - в полной неуверенности продолжал он, - то раз всего три корня, то, как их ни переставляй, выйдет только шесть различных последовательностей. И все.

Опять полная тишина. Вдруг Илюша почувствовал, что в его левой руке оказалась маленькая коробочка, и действительно, это был просто самый маленький Дразнилка с тремя шашками. Только на шашках были изображены символы корней:

Илюша начал машинально двигать шашечки, но ничего нового или интересного не обнаружил. Да, действительно, всего получалось шесть перестановок! Но он это давно знал:

(x1 x2 x3); (x2 x3 x1); (x3 x1 x2);

затем опять получается то же самое. А если переставить две шашки, ну, скажем, x2 и x2, то получатся еще три случая:

(x2 x1 x3); (x1 x3 x2); (x3 x2 x1);

а потом снова то же.

- Шесть, - согласился Мнимий, - спору нет. Но вам пришлось однажды что-то менять в первом расположении. Это как надо понимать?

- 452 -

- Это как бы два круга Дразнилки; первый можно назвать четным кругом, а второй - нечетным, потому что в первом случае одна шашка постоянно обходит две шашки, как и полагается в Дразнилке, а во втором сначала обходят одну шашку, и порядок меняется. Перейти от одного круга к другому, не вынимая одной шашки из коробочки, нельзя.

При перестановках каждый раз первая шашка попадает в конец направо.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "ВОЛШЕБНЫЙ ДВУРОГ"

Книги похожие на "ВОЛШЕБНЫЙ ДВУРОГ" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Сергей Бобров

Сергей Бобров - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ"

Отзывы читателей о книге "ВОЛШЕБНЫЙ ДВУРОГ", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.