» » » » Антонио Дуран - Истина в пределе. Анализ бесконечно малых


Авторские права

Антонио Дуран - Истина в пределе. Анализ бесконечно малых

Здесь можно скачать бесплатно "Антонио Дуран - Истина в пределе. Анализ бесконечно малых" в формате fb2, epub, txt, doc, pdf. Жанр: Научпоп, издательство Де Агостини, год 2014. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Антонио Дуран - Истина в пределе. Анализ бесконечно малых
Рейтинг:
Название:
Истина в пределе. Анализ бесконечно малых
Издательство:
Де Агостини
Жанр:
Год:
2014
ISBN:
978-5-9774-0708-3
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Истина в пределе. Анализ бесконечно малых"

Описание и краткое содержание "Истина в пределе. Анализ бесконечно малых" читать бесплатно онлайн.



Бесконечно малая величина — это числовая функция или последовательность, которая стремится к нулю. Исчисление бесконечно малых — общее понятие для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Анализ бесконечно малых — вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное учеными. Становление этого понятия связано с именами блистательных математиков: Архимеда, Исаака Ньютона, Готфрида Вильгельма Лейбница, Огюстена Луи Коши и Карла Вейерштрасса. В этой книге идет речь об анализе бесконечно малых и его удивительной истории.






Несколько лет спустя в письме к одному из своих первых учеников Якобу Бернулли Лейбниц написал, что именно эта работа Паскаля со всей ясностью показала ему, что задачи о касательных и квадратурах являются взаимно обратными. Лейбниц добавил, что у Паскаля, должно быть, была повязка на глазах — ничем иным нельзя объяснить то, что он сам не заметил этого. Лейбниц продемонстрировал племяннику Паскаля свою вычислительную машину в июне 1674 года. Паскаль также придумал вычислительную машину, которая, однако, была способна выполнять только сложение и вычитание. Лейбниц выразил сожаление, что некоторые статьи Паскаля были до сих пор не опубликованы, и попросил его племянника отправить ему несколько рукописей этого французского математика и философа.

В течение 1673 года Лейбниц с помощью характеристического треугольника совершил несколько важных открытий. В частности, он открыл метод преобразования, напоминающий современный метод интегрирования по частям. Взяв за основу этот метод, он смог найти разложение в ряд для функции арктангенса и получил свой знаменитый бесконечный ряд, с помощью которого можно вычислить число 71. В декабре 1673 года Лейбниц обсудил с Гюйгенсом возможность решения классической греческой задачи о квадратуре круга с помощью этого ряда.

Далее он занялся решением задач о касательных, взяв за основу метод де Слюза. Хоффман, подробно изучив рукописи Лейбница того периода, сделал вывод, что в своей работе Лейбниц опирался на труды вышеупомянутых авторов, к которым следует добавить Гюйгенса, и не использовал работы Ньютона и Барроу.

В письмах, отправленных во второй половине 1674-го и в начале 1675 года, Лейбниц сообщил Ольденбургу о своих результатах, полученных, по его словам, отчасти «благодаря редкой удаче». В частности, он ознакомил Ольденбурга (не приведя ни подробностей, ни формулы) с рядом для вычисления числа 71, разложением функции арксинуса в ряд, а также косвенно упомянул метод преобразования. На этот раз Ольденбург ответил ему в более критическом тоне, чем в ранний период их знакомства, так как в то время Лейбниц не скрывал своего дилетантства. Также не приводя ни подробностей, ни формул, он сообщил Лейбницу о результатах, полученных британскими математиками, в частности Ньютоном и Джеймсом Грегори: «Мне хотелось бы обратить ваше внимание на то, что теория и метод измерения кривых, которые использует уже упомянутый Джеймс Грегори, а также Исаак Ньютон, могут быть применены к любой кривой, механической или геометрической». В письме от 20 марта 1675 года Лейбниц просит подробнее рассказать об этих результатах.

Ольденбург переадресовал письмо Коллинзу, после чего 12 апреля направил Лейбницу ответ, в котором указывается разложение в ряд для синуса и арксинуса, полученное Ньютоном, ряды Грегори для тангенса и арктангенса, а также некоторые результаты, касающиеся интерполяции, квадратур и других задач. Как бы то ни было, в письме приводились лишь результаты, но не объяснялось, каким способом они были получены. Лейбниц приписал авторство этих рядов Ольденбургу и, по мнению Хоффмана, не совсем понял, что попало ему в руки, так как пообещал сравнить эти результаты со своими и дать по этому поводу комментарий, но так никогда и не сделал этого. Так как о некоторых из этих рядов Лейбниц узнал позднее и из других источников, это дало Ньютону основания впоследствии обвинить его в плагиате результатов, полученных через Ольденбурга.

Мы можем достаточно точно указать, когда Лейбниц открыл анализ бесконечно малых. Это произошло в конце октября — начале ноября 1675 года, если вообще уместно приводить столь точные даты для такого значимого открытия. В сохранившихся рукописях, которые относятся к этому периоду, особенно тех, что датированы 29 октября и 11 ноября, Лейбниц вводит систему обозначений математического анализа и описывает с ее помощью алгоритм, в котором впоследствии станут заметны различия с работами его предшественников, приводит правила анализа и определяет интегрирование и дифференцирование как взаимно обратные операции. Хоффман пишет: «После того как был сделан этот первый, решающий шаг в сторону «алгебраизации» задач о бесконечно малых, перед этим человеком, умевшим определить характерные и общие элементы среди мешанины похожего, открылась новая картина мира. <…> Он четко понимал, чего не хватает в созданном им математическом анализе, но знал, что эти недостатки можно исправить и что путь в новый мир успешно открыт».

Ключевую роль сыграли работы по решению задач поиска кривой по заданной касательной, которыми Лейбниц занимался в октябре 1675 года. За год до этого он решил задачу определения кривой по известной поднормали.

В рукописи, датируемой 29 октября 1675 года, Лейбниц ввел знак ∫ — стилизованную букву S, первую букву латинского слова summa для обозначения суммы бесконечно малых. До этого использовалась аббревиатура omn. — от латинского de omnium («все»), введенная Кавальери. Лейбниц писал: «Будет удобно записывать omn. как ∫, так что ∫l = omn.l, то есть сумма l».

Далее в этой же рукописи он вводит букву d для обозначения дифференциала.

Изначально он поместил это обозначение в знаменатель: «Это получается обратным расчетом. То есть допустим, что ∫l = уа, где l = ya/d. Тогда с ростом ∫d будет уменьшаться в размерах. Однако ∫ означает сумму, a d — разность».

Спустя несколько дней в рукописи, датированной 11 ноября 1675 года, он переместил d в числитель и записал — как dx. В этой же рукописи Лейбниц задается вопросом о равенстве d(xy) и dxdy, а также

Он делает вывод, что равенство между ними не выполняется, однако не приводит верных формул для нахождения дифференциала произведения и частного.

Чтобы увидеть нечто общее среди беспорядочного множества результатов, полученных его предшественниками при решении задач о квадратурах, центрах тяжести, касательных, задач нахождения кривой по заданной касательной и других, и сформулировать понятия интегрирования и дифференцирования, требовался алгебраический язык. Этот язык Лейбниц в совершенстве освоил во время работы над решением уравнений, проведенной за несколько месяцев вплоть до октября 1675 года. Следует отметить, что Лейбниц не преуспел в решении уравнений, однако освоил язык алгебры, без которого не смог бы впоследствии открыть свой метод математического анализа.

Дом, в котором жил Лейбниц во время пребывания в Ганновере.

Лейбниц сообщил основу своего метода Ньютону в ответ на его письма, переданные через Ольденбурга в июне и октябре 1676 года. Эта переписка Ньютона и Лейбница впоследствии сыграла решающую роль в споре о том, кто же первым создал анализ бесконечно малых. Как мы уже говорили, Ньютон отправил Лейбницу два письма: так называемое Epistolae prior, датированное 13 июня 1676 года, и Espistolae posterior, датированное 24 октября 1676 года. Ответы Лейбница датируются 17 августа 1676 года и 11—12 июня 1677 года. Они не озаглавлены, но их значение не менее масштабно. В своих письмах Ньютон излагает Лейбницу большую часть De analysi и De methodis о разложении в ряд, но почти не упоминает о своей версии анализа бесконечно малых. Лейбниц же в своих письмах излагает свой метод полностью. Ньютону следовало понять, что метод Лейбница столь же полон, как и его собственный, и вовремя опубликовать свои труды, чтобы доказать свое первенство. Вестфолл пишет: «Можно лишь предполагать, каковы были бы возможные последствия этого шага, но можно с уверенностью сказать, что в этом случае обе стороны не запятнали бы себя позорными поступками, которые в итоге совершили». Валлис чрезвычайно проницательно заметил: «По моему мнению, господину Ньютону следует усовершенствовать свою нотацию и незамедлительно опубликовать эти письма [имеются в виду два Epistolae]».

Годы, проведенные в Париже, стали для Лейбница непростыми. После смерти курфюрста Майнца в феврале 1673 года и изменений в ходе военных действий между Францией и Голландией политическая и дипломатическая миссия Лейбница потеряла смысл. Лейбниц опасался, что ему прикажут вернуться в Германию. Однако его новый покровитель предложил ему остаться в Париже и продолжать работу.

Лейбниц предпринял несколько неудачных попыток получить должность во французской столице. Ему не удалось получить пост дипломата (этому помешало его происхождение), а также не удалось занять оплачиваемый пост во Французской академии наук, где он представил свою вычислительную машину в начале 1675 года. (К сожалению для него, оплачиваемые должности уже занимали Гюйгенс и Кассини, и Академия не могла принять еще одного иностранца.) Несмотря на то что Лейбниц в течение всей второй половины того года использовал все свои многочисленные связи, попытка получить должность заведующего кафедрой в Коллеж де Франс после смерти Роберваля также окончилась неудачей. Шло время, но единственное предложение, которое ему поступило, — это приглашение на службу к графу Иоганну Фридриху, курфюрсту Ганновера. Лейбниц в конце концов принял предложение, но это означало, что ему придется вернуться в Ганновер, жить вдали от главных научных центров того времени и полностью зависеть от курфюрста, рискуя потерять должность в любой момент. Ему удалось продлить свое пребывание в Париже, насколько это было возможно — сначала до мая 1676 года, затем до октября. 4 октября он оставил Париж и направился в Германию, где его ждала должность библиотекаря в Ганновере. К работе следовало приступить в январе. Он больше никогда не возвращался в город, где в условиях величайшего давления, обеспокоенный будущей карьерой, он открыл анализ бесконечно малых.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Истина в пределе. Анализ бесконечно малых"

Книги похожие на "Истина в пределе. Анализ бесконечно малых" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Антонио Дуран

Антонио Дуран - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Антонио Дуран - Истина в пределе. Анализ бесконечно малых"

Отзывы читателей о книге "Истина в пределе. Анализ бесконечно малых", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.