Эрнст Нагель - Teopeма Гёделя

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Teopeма Гёделя"
Описание и краткое содержание "Teopeма Гёделя" читать бесплатно онлайн.
Нагель Эрнест, Ньюмен Джеймс Рой. Теорема Гёделя: Пер. с англ. Изд. 2-е, испр. — М.: КРАСАНД, 2010. — 120 с. (НАУКУ — ВСЕМ! Шедевры научно-популярной литературы.)
Вниманию читателя предлагается книга известного американского логика Э. Нагеля и опытного популяризатора науки Дж. Р. Ньюмена, посвященная теореме Гёделя о неполноте. Эта теорема была изложена в небольшой статье К. Гёделя, которая впоследствии сыграла решающую роль в истории логики и математики. Авторы настоящей книги, не пытаясь дать общий очерк идей и методов математической логики, строят изложение вокруг центральных, с их точки зрения, проблем этой науки — проблем непротиворечивости и полноты. Доказательство того факта, что для достаточно богатых математических теорий требования эти несовместимы, и есть то поразительное открытие Гёделя, которому посвящена книга. Не требуя от читателя по существу никаких предварительных познаний, авторы с успехом объясняют ему сущность одной из самых замечательных и глубоких теорем математики и логики.
Для специалистов по математической логике, студентов и аспирантов, а также всех заинтересованных читателей.
Констатированные выше ограничения возможностей вычислительных машин не свидетельствуют и о беспочвенности надежд на объяснение явлений жизни и человеческого мышления в физико-химических терминах. Сама по себе теорема Гёделя не отвергает и не подтверждает возможности такого рода объяснений. Единственный непреложный вывод, который мы можем сделать из гёделевской теоремы о неполноте, состоит что природа и возможности человеческого разума неизмеримо тоньше и богаче любой из известных пока машин. И работа самого Гёделя является замечательным примером этой тонкости и богатства, дающим повод отнюдь не для уныния, а, наоборот, для самых смелых надежд на силу творческой мысли.
Послесловие переводчика
Курт Гёдель — крупнейший специалист по математической логике — родился 28 апреля 1906 г. в Брюнне (ныне г. Брно, Чехия). Окончил Венский университет, где защитил докторскую диссертацию, был доцентом в 1933–1938 гг. После аншлюса эмигрировал в США. С 1940 по 1963 г. Гёдель работает в Принстонском институте высших исследований (с 1953 г. — профессор этого института). Гёдель — почетный доктор Йельского и Гарвардского университетов, член Национальной академии наук США и Американского философского общества.
В 1951 г. К. Гёдель удостоен высшей научной награды США — Эйнштейновской премии. В статье, посвященной этому событию, другой крупнейший математик нашего времени Джон фон Нейман писал[21]: «Вклад Курта Гёделя в современную логику поистине монументален. Это — больше, чем просто монумент, это веха, разделяющая две эпохи… Без всякого преувеличения можно сказать, что работы Гёделя коренным образом изменили сам предмет логики как науки».
Действительно, даже сухой перечень достижений Гёделя в математической логике показывает, что их автор по существу заложил основы целых разделов этой науки: теории моделей (1930 г.; так называемая теорема о полноте узкого исчисления предикатов, показывающая, грубо говоря, достаточность средств «формальной логики» для доказательства всех выражаемых на ее языке истинных предложений), конструктивной логики (1932–1933 гг.; результаты о возможности сведения некоторых классов предложений классической логики к их интуиционистским аналогам, положившие начало систематическому употреблению «погружающих операций», позволяющих осуществлять такое сведение различных логических систем друг к другу), формальной арифметики (1932–1933 гг.; результаты о возможности погружения классической арифметики в интуиционистскую, показывающие в некотором смысле непротиворечивость первой относительно второй), теории алгоритмов и рекурсивных функций (1934 г.; определение понятия общерекурсивной функции, сыгравшего решающую роль в установлении алгоритмической неразрешимости ряда важнейших проблем математики, с одной стороны, и в реализации логико-математических задач на электронно-вычислительных машинах — с другой), аксиоматической теории множеств (1938 г.; доказательство относительной непротиворечивости аксиомы выбора и континуум-гипотезы Кантора от аксиом теории множеств, положившее начало серии важнейших результатов об относительной непротиворечивости и независимости теоретико-множественных принципов).
Но даже если бы на «счету» Гёделя не было ни одного из таких замечательных достижений, достаточно было бы одной его работы, чтобы имя ее автора составило целую эпоху в истории науки. Именно этой двадцатипятистраничной статье двадцатипятилетнего автора и посвящена книжка известного американского логика Э. Нагеля и опытного популяризатора науки Дж. Р. Ньюмена, переведенная на большинство европейских языков.
Среди довольно многочисленной к настоящему времени популярной литературы по математической логике книга Нагеля и Ньюмена выделяется своей «целенаправленностью». Не пытаясь дать общий очерк идей и методов математической логики, авторы строят изложение вокруг центральных, с их точки зрения, проблем этой науки — проблем непротиворечивости и полноты. Доказательство того факта, что для достаточно богатых математических теорий требования эти несовместимы, и есть то поразительное открытие Гёделя, которому посвящена книга. Не требуя от читателя по существу никаких предварительных познаний, авторы с успехом объясняют ему сущность одной из самых замечательных и глубоких теорем математики и логики.
Стремясь к популярности изложения, авторы допускают ряд неточностей технического характера. Немногочисленные их замечания философского характера также представляются несколько поверхностными. Необходимость восполнения таких дефектов наряду с требованием уложиться в жестко ограниченный объем заставила переводчика несколько сократить текст за счет некоторых длиннот, повторений и отступлений. Местами сокращения удалось добиться ценой некоторой перекомпоновки материала. Все эти отступления от оригинала специально нами не оговаривались. Опущены также предметный указатель и библиография: читатель может найти дополнительные ссылки по заинтересовавшим его вопросам по монографии С. К. Клини «Введение в метаматематику» (пер. с английского, М.: Изд-во иностр. лит., 1957; 2-е изд. М.: URSS, 2009).
Ю. А. Гастев
Примечания
1
Из этого определения немедленно вытекает, что аксиомы также причисляются к теоремам (доказательство каждой такой теоремы состоит из единственной формулы — из нее самой). — Прим. перев.
2
Именно обозначает, но не является формулой (является именем формулы); S, не принадлежащая алфавиту описываемого исчисления, относится к его метаязыку. — Прим. перев.
3
В тех случаях, когда нечего опасаться недоразумений, часть скобок в записях формулы опускают.
4
В Principia была еще аксиома «(p ˅ (q ˅ r)) ˅ (q ˅ (p ˅ r))» выводимая, однако, как установил П. Бернайс (1926), из остальных четырех аксиом. — Прим. перев.
5
Начиная отсюда, мы будем, как обычно, опускать кавычки при записях формул, напечатанных в отдельную строку. Нам, ведь, нужны не сами по себе кавычки, а уверенность в том, что не возникнет недоразумений (ср. с названием книги Рассела и Уайтхеда, всюду в настоящей книжке выделяемым не кавычками, а курсивом). — Прим. перев.
6
«Переводы» эти, разумеется, к самому исчислению не относятся. — Прим. перев.
7
Причем сказанное верно безотносительно к тому, входит ли в формулы S1 и S2 хоть одна общая переменная. — Прим. перев.
8
Конечно, еще более простой пример — формула, состоящая из одной-единственной переменной p. — Прим. перев.
9
Такое расширение можно произвести, просто присоединив эти недоказуемые предложения к арифметике в качестве новых аксиом. Поскольку мы считаем их истинными, то отрицания их не должны и не могут быть доказуемы в арифметике; значит, такое расширение непротиворечивой системы не может сделать ее противоречивой. — Прим. перев.
10
Конечно, у авторов речь шла об английском, а у самого Ришара — о французском языке. — Прим. перев.
11
Пропуск между словами можно при этом считать особой «буквой» (например, последней в алфавите) или просто писать слова подряд, без пропусков. — Прим. перев.
12
Можно было бы сказать «перевода», «моделирования», «кодирования», «представления»; в переводе мы далее будем сознательно варьировать употребление этих терминов, чтобы подчеркнуть принципиальное родство понятий, выражаемых этими терминами, между собой и с используемым далее понятием «нумерации». — Прим. перев.
13
Имеется много различных способов приписывания гёделевских номеров, и какой из них выбрать — совершенно несущественно.
14
После чего уже совсем нетрудно проверить, является ли данное выражение формулой или доказательством нашего исчисления (ср. предыдущее примечание). — Прим. перев.
15
От англ. demonstration (доказательство). — Прим. перев.
16
Цифра — это числовой знак, или имя числа (ср. выше примечание авторов на с. 35–36). — Прим. перев.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Teopeма Гёделя"
Книги похожие на "Teopeма Гёделя" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Эрнст Нагель - Teopeма Гёделя"
Отзывы читателей о книге "Teopeма Гёделя", комментарии и мнения людей о произведении.