» » » » Владо Дамьяновски - CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии


Авторские права

Владо Дамьяновски - CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии

Здесь можно скачать бесплатно "Владо Дамьяновски - CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии" в формате fb2, epub, txt, doc, pdf. Жанр: Техническая литература, издательство ООО «Ай-Эс-Эс Пресс», год 2006. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Владо Дамьяновски - CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
Рейтинг:
Название:
CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
Издательство:
ООО «Ай-Эс-Эс Пресс»
Год:
2006
ISBN:
5-87049-260-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии"

Описание и краткое содержание "CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии" читать бесплатно онлайн.



Это 2-е издание популярной за рубежом и в России книги Владо Дамьяновски — всемирно известного эксперта в области видеонаблюдения и охранного телевидения, в которой обобщено около десяти лет теоретических исследований и более двадцати лет практического опыта. Книга ориентирована на довольно широкую читательскую аудиторию — менеджеров по системам безопасности, инсталляторов и интеграторов оборудования, консультантов, разработчиков и конечных пользователей. Кроме того, книга будет по достоинству оценена теми, кто собирается заняться системами видеонаблюдения и охранным телевидением.






Еще в 1933 г. Келл (Kell) и его коллеги обнаружили в ходе экспериментов, что при вычислении «реального» вертикального разрешения следует применять поправочный коэффициент, равный 0.7. Он известен как коэффициент Келла (или Келл-фактор) и является общепринятым способом аппроксимации реального разрешения. Это означает, что 575 следует скорректировать (умножить) на 0.7, чтобы получить практические границы вертикального разрешения для PAL, которое равняется примерно 400 ТВ-линиям. Та же операция выполняется в отношении сигнала NTSC, и в результате мы получаем приблизительно 330 ТВ-линий (строк) вертикального разрешения. Эти значения истинны в идеальном случае, то есть, в случае идеальной передачи видеосигнала.

Разрешающая способность по горизонтали (горизонтальное разрешение) определяется несколько иначе. Горизонтальное разрешение определяется числом горизонтальных элементов, которые можно зафиксировать камерой и воспроизвести на экране монитора. И, аналогично тому, что мы сказали относительно вертикального разрешения, горизонтальное разрешение сообщает нам, сколько вертикальных линий можно подсчитать.

Кое-чем оно отличается. Поскольку соотношение сторон в телевидении составляет 4:3, то ширина больше высоты. Чтобы сохранить естественные пропорции изображений, мы считаем только вертикальные линии по ширине, эквивалентной высоте, т. е. 3/4 от ширины. Вот почем мы называем горизонтальное разрешение ТВ-линиями, а не просто линиями, что



Рис. 4.21. Генератор качающейся частоты (макс. 12 МГц) позволяет проверить полосу частот монитора высокого разрешения (на иллюстрации указано 9 МГц, соответствует примерно 700 ТВ-линиям)


Горизонтальное разрешение монохромной (ч/б) ТВ-системы теоретически ограничено только поперечным сечением электронного луча, электроникой монитора и, естественно, спецификациями камеры. В действительности, существует много других ограничений. Одно из них — это ширина полосы частот видеосигнала для данного типа передачи. Даже при том, что в ТВ-студии могут быть камеры с высоким разрешением, мы передаем только 5 МГц видеоспектра (как указывалось выше); поэтому производителям совершенно не нужно выпускать ТВ-приемники с более широкой полосой частот. В видеонаблюдении, тем не менее, ширина полосы видеосигнала диктуется, главным образом, самой камерой, так как ч/б мониторы имеют очень высокое разрешение (до 1000 ТВ-линий), которое ограничено только качественными характеристиками монитора, из которых самые важные — это точность и поперечное сечение электронного луча.

У системы цветного ТВ есть еще одно препятствие: физический размер цветовой маски и ее шаг.

Цветовая сетка имеет форму очень мелкой решетки. Эта решетка используется для разделения на три основных цвета — красный, зеленый и синий. Число элементов цветного изображения (точки RGB) в решетке определяется размером экрана монитора и качеством ЭЛТ. В видеонаблюдении доступно любое число ТВ-линий: от 330 (горизонтальное разрешение) до 600. Самый распространенный стандарт мониторов — 14 (дюймов) с разрешением 400 ТВ-линий. Напоминаем, что мы говорим о ТВ-линиях, которые в горизонтальном направлении дают нам абсолютное максимальное число 400x4/3 = 533 различимых вертикальных линий.

В видеонаблюдении, подобно вещательному ТВ, мы не можем изменять вертикальное разрешение, так как мы ограничены числом, определенным системой развертки. Именно поэтому мы редко рассматриваем проблему вертикального разрешения. Общепринятым вертикальным разрешением является примерно 400 ТВ-линий для CCIR и 330 ТВ-линий для EIA. Горизонтальное разрешение мы можем менять, и оно зависит от горизонтального разрешения камеры, качества средств передачи информации и монитора. В видедонаблюдении часто используются камеры с 570 ТВ-линиями горизонтального разрешения, которое соответствует максимуму приблизительно в 570x4/3 = 760 линий по ширине экрана. Камера такого типа считается камерой с высоким разрешением. В ч/б камере со стандартным разрешением горизонтальное разрешение будет составлять 400 ТВ-линий.

Между шириной полосы видеосигнала и соответствующим числом линий существует простое соотношение. Если взять одну строку видеосигнала, активная продолжительность которого равна 57 микросекунд, и распределить его на 80 ТВ-линий, мы получим 80x4/3 = 107 линий. Эти линии, представленные в виде электрического сигнала, напоминают синусоидальные колебания. Так, пара черно-белых строк фактически соответствует одному периоду синусоидальной волны. Поэтому, 107 линий — это приблизительно 54 синусоиды. Период синусоидального колебания равнялся бы 57 мкс/54 = 1.04 мкс. Если применить известное соотношение для времени и частоты, то есть T = 1/f, то мы получим f = 1 МГц. Следующее важное, но очень простое эмпирическое правило, дает нам соотношение между полосой частот сигнала и его разрешением: приблизительно 80 ТВ-линий соответствуют 1 МГц полосе частот.


Инструменты, используемые в телевидении

Обычным электронным мультиметром очень трудно определить свойства видеосигнала. Однако в нашем распоряжении имеются специальные инструменты, которые при правильном использовании позволяют точно описать измеряемый видеосигнал. Это осциллографы, анализаторы спектра и вектороскопы. В большинстве случаев достаточно осциллографа, и я настоятельно рекомендую серьезным специалистам иметь его в своем арсенале.


Осциллограф

Изменение сигнала (по времени) может происходить медленно или быстро. Что считать «медленным» и «быстрым», зависит от многих связанных друг с другом условий. Одно периодическое изменение какого-либо параметра за одну секунду определяется как Герц (Гц). Звуковая частота 10 кГц соответствует 10000 колебаний в секунду. Человеческое ухо может воспринимать частоты в диапазоне от 20 Гц до 15000-16000 Гц. Видеосигнал, в соответствии с упомянутыми выше стандартами, может иметь частоту от примерно 0 Гц до 5-10 МГц.

Чем выше частота, тем точнее детали в видеосигнале.

Насколько высокую частоту мы можем использовать, зависит, прежде всего, от снимающего устройства (камеры), но также и от средств передачи (коаксиального кабеля, микроволновых средств, волоконной оптики) и средств обработки/воспроизведения (видеомагнитофона, памяти кадров, жесткого диска, монитора).

Временной анализ любого электрического сигнала (в противоположность анализу частоты) можно проводить при помощи электронного инструмента, который называется осциллограф. Осциллограф работает по принципу ТВ-монитора, только в данном случае, сканирование электронного луча следует за напряжением видеосигнала в вертикальном направлении, в то время как по горизонтали единственной переменной является время. С так называемым регулированием временной развертки можно проанализировать видеосигналы от полевого режима (20 миллисекунд) до ширины строчной синхронизации (5 микросекунд).

На фотографии слева мы можем видеть типичный вид видеосигнала CCIR на экране осциллографа.

Результаты измерения, полученные с помощью осциллографа, являются наиболее объективными признаками качества видеосигнала, поэтому этим прибором непременно должен быть оснащен любой серьезный специалист по видеонаблюдению. Во-первых, осциллограф позволяет очень легко видеть качество сигнала, игнорируя любые возможные сбои яркости/контраста на мониторе.



Рис. 4.22. Осциллограф


Можно легко проверить и подтвердить уровни синхронизации видеосигнала независимо от того, имеет ли видеосигнал надлежащую оконечную нагрузку в 75 Ом, насколько далек сигнал (уменьшение амплитуды сигнала и потери высоких частот) и есть ли помехи в конкретном кабеле. Для корректных измерений всегда требуется правильная оконечная нагрузка, то есть, входное полное сопротивление осциллографа высоко и каким бы способом ни устанавливался сигнал, необходимо, чтобы на конце линии передачи сигнала было 75 Ом.

Примеры корректного соединения осциллографа с целью правильного измерения видеосигнала представлены на рис. 4.23.



Рис. 4.23. Как правильно проводить измерения при помощи осциллографа



Рис. 4.24. Измерительный комплекс Tektronix 1781


Анализатор спектра

Как уже говорилось в связи с теорией Фурье, у каждого изменяющегося (по времени) электрического сигнала есть частотное представление. Частотная область описывает амплитуду сигнала по отношению к частоте, а не ко времени. Представление в области частоты позволяет лучше понять состав электрического сигнала. Большая часть видеосигнала приходится на низкие и средние частоты, в то время как мелкие детали передаются на более высоких частотах.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии"

Книги похожие на "CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Владо Дамьяновски

Владо Дамьяновски - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Владо Дамьяновски - CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии"

Отзывы читателей о книге "CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.