» » » » Александр Казанцев - Том (7). Острие шпаги


Авторские права

Александр Казанцев - Том (7). Острие шпаги

Здесь можно скачать бесплатно "Александр Казанцев - Том (7). Острие шпаги" в формате fb2, epub, txt, doc, pdf. Жанр: Научная Фантастика, издательство Молодая гвардия, год 1984. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Александр Казанцев - Том (7). Острие шпаги
Рейтинг:
Название:
Том (7). Острие шпаги
Издательство:
Молодая гвардия
Год:
1984
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Том (7). Острие шпаги"

Описание и краткое содержание "Том (7). Острие шпаги" читать бесплатно онлайн.



Социально-фантастический и приключенческий роман известного советского писателя, главным героем которого является французский математик Ферма, сформулировавший в свое время увлекательную и нерешенную до сих пор проблему теории чисел. В книге помещены четыре рассказа автора.

Иллюстрации художника Ю. Г. Макарова.

http://ruslit.traumlibrary.net






– Я всегда следовал Пифагору, говорившему: «Делай великое, не обещая великого». Что я могу сказать о мною сделанном? Что оно недостаточно! Разве только: «Потомство будет признательно мне за то, что я показал ему, что древние не всё знали, и это может проникнуть в сознание тех, которые придут после меня для передачи факела сыновьям…»

– Подожди, отец, я запишу эти слова.

– Я уже написал их в письме к Каркави[31], а закончил его словами: «Многие будут приходить и уходить, а наука обогащаться».

– Но ты, отец, как никто другой, сумел обогатить ее.

– О нет! Крайне мало! Я рад поговорить с тобой об этом. Наша с тобой дружба, я не ошибусь, говоря это, зиждется на понимании тобой того, что я делаю.

– Конечно! Ради этого я и избрал для себя стезю ученого.

– Только тебе здесь могу я рассказать о самом для меня важном. Еще один мой друг, немногим старше тебя, Блез Паскаль, которого ты знаешь, постоянно побуждает меня и к поискам, и к публикациям. Это он буквально принудил меня опубликовать вместе с ним (я не мог обречь на забвение сделанную им часть работы!) былые мои находки в области теории вероятностей, которым, кстати говоря, ты обязан своим участием в книготорговле.

– Я понял и не забыл. Что же Паскаль, отец?

– Он знал мое давнишнее увлечение суммой двух величин, возведенной в какую-то степень (x + y)n, где n любое целое число. И он прислал мне замечательную таблицу коэффициентов для членов многочлена, получающегося при возведении в степень бинома при всевозрастающих степенях. Ты только вглядись, какой непостижимой красоты эти расположенные в виде треугольника числа. Я назвал их «треугольник Паскаля»[32]!

Значения коэффициентов для порядковых членов

Эта таблица напомнила мне мою давнюю работу в Египте, подаренную замечательному арабскому ученому Мохаммеду эль Кашти, который, оказывается, трагически погиб от руки невежд. В треугольнике Паскаля, как и в моей таблице пифагоровых чисел, можно заметить математические закономерности, прогрессии рядов. Смотри: первый косой ряд, состоящий из одних единиц, имеет показатель арифметической прогрессии, равный нулю, второй – последовательный ряд чисел – единице. Третий – величине степени «n». Четвертый сложнее: каждый последующий член больше предыдущего на сумму степеней от нуля до рассматриваемой степени. Дальше еще сложнее.

– Это действительно увлекает.

– Что ты! Это пустяк по сравнению с истинной вершиной красоты. Зачем все эти сложные математические зависимости, если все определяет единственная, но всеобъемлющая? Всмотрись внимательнее в таблицу и, пожалуйста, не разочаровывай меня. Ищи!

Самуэль с интересом вглядывался в письмо Паскаля.

– Отец! Это непостижимо, я просто случайно наткнулся на удивительное свойство! Ведь каждое число в таблице равно сумме двух, расположенных над ним в предыдущем горизонтальном ряду!

– Браво, мой мальчик! Ты будешь ученым! Если искать подлинную математическую красоту, то вот она! Удивительное свидетельство существования таких математических тайн, о которых мы и не подозреваем[33].

– Да, отец, я понимаю тебя. Есть от чего прийти в восторг! Мне это представляется пределом достижимого.

– Как ты сказал? – сощурился Пьер Ферма. – Пределом достижимого? Пусть никогда эта повязка не закрывает твоих глаз ученого. Никогда воображаемый или даже увиденный «предел достижимого» не должен останавливать тебя в будущем как ученого.

– Я понимаю тебя, отец, и не понимаю.

– Я признаюсь тебе, Самуэль. Красота математической зависимости в таблице – это лишь сочетание граней частных случаев. А подлинная, всеобъемлющая красота – в обобщении. Ты понял меня?

– В обобщении? Ты хочешь сказать, что можно представить бином в какой-то степени в общем виде?

– Именно эту задачу я и поставил перед собой.

– Ты восхищаешь и поражаешь меня, отец. Придя в такой восторг от открытия Паскаля, ты пытаешься уйти вперед, возвыситься над таблицей частных значений!

– То, что может быть вычислено, должно и может быть представлено в виде универсальной формулы.

– Неужели ты нашел ее, отец?

– Да. Я еще никому не показывал ее, но подготовил письмо Каркави, заменившему почившего беднягу аббата Мерсенна, чтобы тот разослал копии европейским ученым. Журнала у нас все еще нет.

– Но, отец, не требуй от близких больше того, что они способны дать.

– Ты учишь меня разумному. Я всю жизнь стараюсь руководствоваться этим принципом.

– Так покажи мне формулу и вывод ее.

– Ты хочешь, чтобы я нарушил свой принцип? Нет, друг мой и сын мой! Даже для тебя я не сделаю исключения. Хочешь видеть мой БИНОМ, пожалуйста. Но получить его с помощью математических преобразований попробуй сам. Я хочу убедиться, что ты станешь подлинным ученым.

– Но я не решусь соперничать с тобой.

– Это не соперничество. Труднее всего достигнуть конечной цели, не зная ее, а если она известна, то дорогу к ней найти легче.

– Но ко многим указанным тобой целям ученые так и не могут найти дороги. Потому так и ждут твоего собрания сочинений.

– Ты опять об этом. Лучше я тебе покажу свою формулу: (x + y)n = (Mx + y)n + (x + My)n! – Он написал ее тростью сына на песке.

– Но как же мне найти дорогу к этой вершине?

– Я чуть-чуть помогу тебе, из отцовских чувств, конечно! Видишь ли, когда-то я предложил систему координат, которой воспользовался, в частности, мой друг Рене Декарт.

– Ему нужно было бы при этом больше сослаться на тебя.

– Я предложил систему координат, чтобы ею могли пользоваться все математики, которые найдут ее удобной, и не требую от них специальных поклонов в мою сторону.

– Ты остаешься самим собой, отец! Право, хотелось бы позаимствовать у тебя такие примечательные черты характера, которые поднимают тебя и надо мной, и над всеми. Итак, система координат?

– Теперь я пошел дальше. Ведь никогда не надо останавливаться на достигнутом. Я решил воспользоваться сразу двумя системами координат – прямой и перевернутой. Это позволило мне создать метод совмещенных парабол.

– Очень интересно! Но как это понять?

И Пьер Ферма стал объяснять сыну суть своего метода[34], снова взяв у него трость, чтобы чертить на песке.

Ферма закончил формулой xn + yn = zn и вернул сыну трость.

– Но ведь это же Диофантово уравнение! – воскликнул Самуэль.

– Ты прав. Мне еще придется заняться им. Примечательно, что оно получается из геометрического построения. Этим же построением можешь воспользоваться и ты, если не раздумал еще доказать формулу моего «бинома».

– Я попробую, отец, но ты, вероятно, переоцениваешь мои силы.

– Напротив, я надеюсь на тебя! Передаю тебе факел, как написал в своем письме.

– Сестричка! – воскликнул Самуэль.

На аллее показалась Сюзанна, худая и прямая, с холодным красивым лицом, так гордо несущая голову, что взгляд ее серых глаз казался едва ли не надменным.

– Мама просит к столу. Обед подан, – пригласила она.

Отец и сын поднялись и зашагали следом за девушкой, невольно любуясь ее осанкой. Она только раз обернулась, чтобы бросить на брата оценивающий взгляд. Тот, сняв шляпу, шутливо раскланялся.

За столом собралась вся семья, все семеро Ферма.

Жанна, строгая и заботливая, опекала четырехлетнюю Эдит; Жорж не вымыл руки, за что получил от нее выговор; Сюзанна не обращала на младших никакого внимания. Луиза сидела с красными глазами, так и не оправившись от недавнего разговора с мужем.

– А к нам, к садовой калитке, приезжал сегодня верхом молодой Массандр. И совсем даже не ко мне, – заявил Жорж. – К нему бегала Сюзанна. Вот!

– Замолчи за столом! – прикрикнула на него Жанна, заметив, как презрительно улыбнулась Сюзанна.

– Сладу с ним нет! – вздохнула Луиза. – Ты бы хоть старшего брата постыдился!

– А что мне стыдиться? Ведь не я с Массандром целовался, а Сюзанна.

Сюзанна с шумом отодвинула тарелку и с гордым видом вышла из столовой.

– Ну вот! Все вместе посидеть не можем! – плачущим голосом произнесла Луиза.

– Я сейчас приведу ее обратно! – вызвалась Жанна и выскочила из-за стола, погрозив кулаком Жоржу.

А тот сидел, расплывшись в озорной улыбке до ушей.

Сестры вернулись вместе и сели за стол как ни в чем не бывало.

Пьер Ферма понял только одно. Хочет он того или не хочет, но, видно, придется ему породниться с бывшим прокурором, ныне главным уголовным судьей Массандром. Вот уж чего не мог он предвидеть тридцать лет назад! Но годы меняют все!

Самуэль был оживленным, острил, рассказывал про Париж, заставляя сестер замирать от восторга.

Маленькая Эдит заявила, что обед невкусный и что Жорж ее все время толкает.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Том (7). Острие шпаги"

Книги похожие на "Том (7). Острие шпаги" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Казанцев

Александр Казанцев - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Казанцев - Том (7). Острие шпаги"

Отзывы читателей о книге "Том (7). Острие шпаги", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.