» » » » Сергей Симонов - Цвет сверхдержавы – красный. Дилогия


Авторские права

Сергей Симонов - Цвет сверхдержавы – красный. Дилогия

Здесь можно скачать бесплатно "Сергей Симонов - Цвет сверхдержавы – красный. Дилогия" в формате fb2, epub, txt, doc, pdf. Жанр: Альтернативная история. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Сергей Симонов - Цвет сверхдержавы – красный. Дилогия
Рейтинг:
Название:
Цвет сверхдержавы – красный. Дилогия
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Цвет сверхдержавы – красный. Дилогия"

Описание и краткое содержание "Цвет сверхдержавы – красный. Дилогия" читать бесплатно онлайн.



Альтернативная история… Попытаемся представить, что будет, если подробная информация о будущем попадёт к самому непредсказуемому лидеру ХХ века? Как могла бы повернуться история СССР после Великой Отечественной войны, будь у тогдашнего руководства страны возможность "заглянуть за горизонт"? Как могли бы развиваться экономика, сельское хозяйство, промышленность, и оборона страны?






   Баталия по поводу рабочего времени в Совете Министров развернулась нешуточная. Министрам Никита Сергеевич мог просто приказать, но вот Байбаков и Сабуров, как плановики, упёрлись рогом, доказывая, что они уже рассчитали план пятилетки из расчёта 6-дневной рабочей недели, обнародовали все показатели, а теперь им придётся всё пересчитывать.

   – Хватит молиться на цифры – отрезал Никита Сергеевич. – А публикация – не так уж важна, опубликуем новые показатели, и объясним, почему так сделано.


   В марте 1956 года академик Лебедев доложил Хрущёву обо всём, что удалось сделать за прошедшие 2 с небольшим года. Проведя гостей в секретную лабораторию, где стоял на столе «суперкомпьютер» из 2012 года, Сергей Алексеевич с гордостью рассказал о достигнутых успехах.

   Около года ушло у инженеров спешно собранной рабочей группы, чтобы одолеть обнаруженную среди прочей компьютерной информации книгу Эви Немет «Unix и Linux. Руководство системного администратора», а также ещё несколько книг, посвящённых операционной системе, и начать применять полученную информацию на практике.

   Поняв логику и принципы работы операционной системы, (заметим, что в реальной истории в 1954-55 гг самого понятия «операционная система» ещё не существовало) они смогли наладить терминальный доступ к ЭВМ, в том числе и в диалоговом режиме, при помощи обыкновенных телетайпов. Был построен коммутационный центр, управлявший подключением пользователей. Мощности «суперкомпьютера» хватало, чтобы одновременно работать с задачами многих пользователей, а скорость линий связи была столь мала, что перегрузить ЭВМ входящими данными было невозможно.

   Документация по операционной системе, языкам программирования и руководства по пользованию в терминальном режиме некоторыми программами были разосланы по основным НИИ, КБ и прочим организациям, нуждающимся в проведении сложных расчётов. Они были встречены с невероятным интересом, поскольку ничего подобного ранее не существовало. Имевшиеся на тот момент во всём мире компьютеры программировались даже не на ассемблере, а непосредственно в машинных кодах. И вдруг появляется готовый к употреблению язык программирования высокого уровня, да не один, а сразу несколько.

   В ИТМиВТ тут же посыпались заявки на доступ к новой ЭВМ в терминальном режиме. Чтобы не нарушать строжайший режим секретности, по всем документам машина проходила под обозначением БЭСМ-1М. (В реальности ЭВМ БЭСМ-1 разработки С.А. Лебедева чаще именовались просто БЭСМ, следующая называлась БЭСМ-2 и т. д. Обозначение БЭСМ-1 большого распространения не получило.)

   Характеристики ЭВМ не разглашались, поскольку для постановки задачи на языке высокого уровня в большинстве случаев знание точных характеристик не требовалось.

   Первыми, и пожалуй основными пользователями стали атомщики. Проблема уменьшения массы и габаритов ядерных и термоядерных зарядов стояла невероятно остро, поэтому приоритет в доступе к «БЭСМ-1М» был отдан сотрудникам Юлия Борисовича Харитона и Кирилла Ивановича Щёлкина.

   Параллельно с освоением «подарка из будущего» в ИТМиВТ шла работа над другими ЭВМ, уже собственной разработки. В это время на Московском заводе счётно-аналитических машин уже выпускалась ЭВМ «Стрела», разработанная к 1953 году в СКБ-245 Юрием Яковлевичем Базилевским. Этих ЭВМ было изготовлено 7 штук, они устанавливались в ВЦ-1 Министерства обороны, в МГУ и в ВЦ Академии Наук СССР. (На ЭВМ «Стрела» в ВЦ-1 МО СССР в пятидесятые годы, начиная с 1956-го года, делались расчёты орбит всех запускаемых в СССР искусственных спутников Земли)

   Лебедев начал в 1954 году разработку ЭВМ М-20 (В реальной истории разрабатывалась с 1955по 1958 год, серийный выпуск с 1959 года). Но теперь, получив информацию о векторе развития электроники вообще и ЭВМ в частности, Сергей Алексеевич запроектировал свою машину 64-разрядной, такой же, как полученный им от Хрущёва «образец» (в реальной истории М-20 была 45-разрядной).

   Эта машина уже имела смешанную конструкцию – в её составе были и ламповые и полупроводниковые блоки. Разумеется, это всё ещё был целый комплекс шкафов, занимавший огромный зал. Но у таких ЭВМ было одно преимущество, немаловажное на тот момент – они были модернизируемы. То есть, условно говоря, через какое-то время можно было заменить шкаф с лампами на шкаф поменьше с полупроводниковым монтажом.

   Тем более, что в НИИ-35 уже активно экспериментировали с размещением нескольких транзисторов на одном кристалле. Вначале эта технология разрабатывалась как метод получения сразу нескольких десятков транзисторов из одной полупроводниковой пластины. (http://myrt.ru/print:page,1,1331-rozhdenie-novojj-otrasli-poluprovodnikovojj.html В реальной истории работы по объединению нескольких десятков транзисторов на одной пластине в 1954-55 гг в НИИ-35 и НИИ-108 вёли М.М. Самохвалов и Г.А. Кубецкий, но тогда они так и не сделали решающего шага, а продолжали пилить пластины на отдельные транзисторы)

   Но после получения информации о микросхемах сразу же родилось предложение: «Зачем пилить пластину, если можно сразу заложить на ней нужную схему из многих элементов, объединённых в одном корпусе?»

   Вектор развития элементной базы был теперь известен, и на опытном заводе НИИ-35 начали выпускать небольшими партиями «малые интегральные схемы» – до 128 элементов на одном кристалле.

   Это был ещё далеко не процессор и даже не полноценная микросхема. И о нанометрах или микрометрах речи, тем более, не шло. Ширина дорожек на первых опытных образцах была под миллиметр, потом её удалось уменьшить до полумиллиметра. Затем работа была продолжена в сторону уменьшения размеров отдельных элементов на кремниевой пластине, увеличения площади самой пластины, и улучшения технологии.

   Тем не менее, в виде такой интегральной схемы можно было сделать, к примеру, отдельный регистр в составе арифметическо-логического устройства, вместо того, чтобы набирать его из отдельных электровакуумных или полупроводниковых элементов, как это делалось обычно в 1950-х. Монтаж упрощался в десятки раз. Стоимость элементов, выпускавшихся малыми партиями, была всё ещё достаточно высокой, зато их надёжность была значительно лучше, чем у электронных ламп. Энергопотребление также было заметно меньше, ЭВМ потребляла теперь уже не десятки, а единицы киловатт. Упростились системы вентиляции и охлаждения. Да и за счёт уменьшения количества отдельных компонентов получался заметный выигрыш по стоимости.

   Неожиданный прорыв был сделан в технологиях оперативной памяти. Сотрудники ИТМиВТ, разумеется, плотнее всего изучали всю информацию, касавшуюся вычислительной техники. И, среди прочего, наткнулись на статью о необычном типе компьютерной памяти на основе твистор-кабеля (http://old.computerra.ru/vision/621983/ Сама идея нагло … э-э-э... «заимствована» у Олега Петрова по наводке Олега Пономаренко :) )

   Тогдашняя компьютерная память на основе ферритных колец была дорогой, трудоёмкой в изготовлении и очень громоздкой. Память на основе твистор-кабеля была несколько дешевле, и не менее громоздка, но её изготовление можно было механизировать. Неожиданную помощь в этом вопросе оказал сам Алексей Николаевич Косыгин.

   Он в 1935 году закончил Ленинградский текстильный институт, а затем с марта 1939 по апрель 1940 г был наркомом тестильной промышленности. Он и свёл академика Лебедева и директора НИИ-35 Маслова с конструкторами-разработчиками ткацких станков.

   Те заинтересовались необычной проблемой, в результате чего к осени 1955 года родилась пока ещё экспериментальная автоматическая линия, на которой производилась навивка ленты из пермаллоевой фольги на медный провод, с последующей запайкой в полиэтиленовую ленту. Производительность линии была не слишком велика, но и ленты памяти пока требовалось не так уж много.

   Разумеется, полупроводниковая память обещала быть значительно дешевле и компактнее, а также быстрее, но до неё было ещё далеко, а на твистор-кабеле можно было строить ЭВМ с объёмом памяти 64-128 кБ уже сейчас. (Для сравнения – Томпсон и Ритчи запустили первую, еще ассемблерную версию Unix в 1970 году на PDP-7 c памятью в 4000 18-битных слов, т. е. примерно 9 килобайт. http://www.linfo.org/pdp-7.html )


   Производство одиночных полупроводниковых элементов – диодов, триодов, транзисторов – началось в 1955 г на ленинградском заводе «Светлана» и к 1956 году было уже освоено. (Исторический факт: в 1957 г советская электронная промышленность выпустила 2,7 млн. шт. транзисторов http://www.computer-museum.ru/technlgy/triod.htm )

   По воспоминаниям А.Я. Федотова: «В это время к транзисторам предъявлялись две основные претензии: разброс и температурный дрейф параметров и низкий температурный предел работы. С разбросом параметров пытались бороться как технологическими методами, так и разбраковкой транзисторов на многочисленные группы. Температурный дрейф параметров удалось в значительной степени компенсировать схемными методами слушателям-дипломникам ВВИА им. Жуковского А.Ш. Акбулатову и Е.П. Чигину. Что же касается ограничения диапазона рабочих температур германиевых транзисторов температурой в +70®С, то здесь неумолимо вставала необходимость осваивать кремний. Тем не менее работы в области германиевых транзисторов продолжались. Была успешно сдана генеральному заказчику НИР «Плоскость», и НИИ-35 перешел к ее опытно-конструкторскому этапу и внедрению.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Цвет сверхдержавы – красный. Дилогия"

Книги похожие на "Цвет сверхдержавы – красный. Дилогия" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Сергей Симонов

Сергей Симонов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Сергей Симонов - Цвет сверхдержавы – красный. Дилогия"

Отзывы читателей о книге "Цвет сверхдержавы – красный. Дилогия", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.