Авторов Коллектив - Философия Науки. Хрестоматия

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Философия Науки. Хрестоматия"
Описание и краткое содержание "Философия Науки. Хрестоматия" читать бесплатно онлайн.
Хрестоматия, предлагаемая вниманию читателей, ориентирована на изучение курса по философии и методологии науки и соответствует программе кандидатских экзаменов «История и философия науки» («Философия науки»), утвержденной Министерством образования и науки РФ. В книге представлены тексты по общим проблемам познания, философии науки, методологии естественных наук и социогуманитарного знания. Каждый тематический раздел хрестоматии структурирован по хронологическому принципу и содержит тексты как мыслителей прошлого, так и современных российских и зарубежных авторов: философов, методологов, ученых.
Книга предназначена студентам, аспирантам, преподавателям и исследователям, интересующимся философско-методологическими проблемами научного знания.
Куда же идет наука? Математические формулировки не являются самоцелью в физике в отличие от чистой математики. Однако формулы в физике — это символы некоторого рода реальности «по ту сторону повседневного опыта». По-моему, факт этот тесно связан с таким вопросом: как объяснить возможность получения объективного знания из субъективного опыта?
К решению упомянутой проблемы я намереваюсь приступить с помощью рассуждений, используемых физиками. Философские системы являются источником незначительно малой части физических методов. Физические методы именно потому и были развиты, что традиционное мышление философов оказалось непригодным. Сила физических методов познания видна уже из того факта, что они оказались успешными. Я имею в виду не только их вклад в понимание явлений природы, но и то, что они привели к открытию новых, нередко совершенно неожиданных явлений, к усилению власти человека над природой.
Тем не менее предлагаемые мною соображения не подпадают под рубрику «эмпиризм», на который с таким презрением смотрят метафизики. Принципы рассуждений физиков не выведены непосредственно из опыта, а являются чистыми идеями, результатами творчества великих мыслителей. Однако принципы эти испытаны в чрезвычайно обширной экспериментальной области. Легко видеть, что у меня нет намерения заниматься философией науки, но философию я собираюсь рассмотреть с научной точки зрения. Не сомневаюсь, что метафизикам это не понравится, но не знаю, чем можно им помочь.
Для начала перечислю некоторые из физических методов рассуждений, укажу их происхождение и достоинства.
Фундаментальный принцип научного мышления состоит в следующем: некоторое понятие используется лишь в том случае, если можно решить. Доказать, применимо ли оно в том или ином конкретном случае, есть ли прецедент такой применимости. Для этого принципа я предлагаю термин «разрешимость» («decidability»).
Когда в электродинамике и оптике движущихся сред физики встретились с очевидно непреодолимыми трудностями, Эйнштейн обнаружил, что эти трудности могут быть сведены к предположению, что понятие одновременности событий в различных системах отсчета имеет абсолютный смысл. Он показал, что это предположение не соблюдается в силу того факта, что скорость света, используемого для обмена сигналами (между различными системами), конечна; с помощью физических средств можно установить лишь относительную одновременность для вполне определенных (инерциальных) систем отсчета. Эта идея приводит к специальной теории относительности и к новой доктрине пространства-времени. Кантовские же идеи о пространстве и времени как об априорных формах интуиции тем самым окончательно опровергаются.
На самом же деле сомнения в идеях Канта возникли много раньше. Вскоре после смерти Канта была открыта — Гауссом, Лобачевским, Больяи — возможность построения неевклидовой геометрии.
Гаусс предпринял попытку экспериментально решить вопрос о корректности Евклидовой геометрии, измеряя углы треугольника, образованного тремя вершинами холмов Брокен, Инзельсберг, Хохе Хаген (в окрестностях Гёттингена). Но он не обнаружил отклонения суммы углов от евклидовского значения 180°. Его последователь Риман был одержим идеей, что геометрия является частью эмпирической реальности. Риман достиг важнейшего обобщения, математически разработав идею об искривленном пространстве. В эйнштейновской теории гравитации, обычно называемой общей теорией относительности, опять был использован принцип разрешимости. Эйнштейн начал с того установленного факта, что в гравитационном поле ускорение всех тел одинаково, не зависит от массы тел. Наблюдатель в замкнутом ящике может, таким образом, не распознать, чему именно обязано ускорение некоторого тела относительно ящика: гравитационному полю или ускоренному движению ящика в противоположном направлении. Из такого простого соображения и была развита грандиозная структура общей теории относительности, основным математическим аппаратом которой оказалась упомянутая выше Риманова геометрия, примененная в данном случае к четырехмерному пространству — комбинации обычного пространства и времени.
Все эти сведения я привожу для того, чтобы проиллюстрировать всю мощь и богатство принципа разрешимости. Еще одним успехом этого принципа является квантовая механика. Вспомним, в каких трудностях погрязла боровская теория орбитального движения электронов в атоме после потрясающего успеха на первых порах. И вот Гейзенберг обратил внимание на то, что теория Бора работала с величинами, которые оказались принципиально ненаблюдаемыми (с такими, как электронные орбиты определенных размеров и периодов). Гейзенберг наметил новую теорию, в которой были использованы только те понятия, действительность которых эмпирически разрешима. Эта новая механика, в разработке основ которой участвовал и я сам, ликвидировала еще одну априорную категорию Канта — причинность. Причинность классической физики всегда интерпретировалась (в том числе, несомненно, и самим Кантом) как детерминизм. Новая квантовая механика оказалась не детерминистической, а статистической (к этому я еще вернусь). Ее успех во всех отраслях физики неоспорим.
Я считаю вполне разумным применение «принципа разрешимости» и к философской проблеме возникновения объективной картины мира.
Напомним, что начали мы со скептического вопроса: неужели можно из субъективного мира чувственного опыта вывести существование объективного внешнего мира?
В самом деле, «механизм» такого вывода является врожденным и настолько естественным, что сомнения в его возможности выглядят довольно странными. Однако сомнения эти существуют, и все попытки найти решение данной проблемы — ив духе кантовской «вещи в себе», и в виде «теории отражения» — я считаю неудовлетворительными, поскольку решения эти нарушают принцип разрешимости. (С. 114-117)
В физике этот принцип объективизации хорошо известен и систематически применяется. Цвета, звуки, даже формы рассматриваются не поодиночке, а парами. Каждый начинающий физик изучает методику так называемого нулевого отсчета, например, в оптике, где настройка измерительного прибора ведется до тех пор, пока не исчезнет воспринимаемая разница (по яркости, оттенку, насыщенности) между двумя полями зрения. Показание шкалы прибора при этом означает наблюдение геометрического «равенства» — совпадения стрелки с делением шкалы. Главная часть экспериментальной физики состоит в такого рода регистрациях показаний на шкалах приборов.
Тот факт, что коммуникабельные объективные утверждения становятся возможными путем сравнения, имеет огромную важность, поскольку в этом сравнении — истоки устной и письменной информации, а также наиболее мощного интеллектуального инструмента — математики. Я предлагаю использовать термин «символы» для всех этих средств общения между индивидами.
Символы (в данном контексте) — это легко воспроизводимые визуальные или звуковые сигналы, точная форма которых не столь важна: достаточно хотя бы грубого воспроизведения. Если я пишу (или произношу) А и еще кто-нибудь также пишет (или произносит) А. то каждый из нас воспринимает свое собственное Я и другое А как одинаковые, как одно и то же А, либо оптическое, либо акустическое. При этом важно соблюдение хотя бы грубого равенства или некоторого подобия (математик здесь указал бы на топологическое сходство) без соблюдения одинаковости в таких частностях, как высота голоса, размашистость почерка, типографский шрифт. Символы являются носителями информации при сообщении между индивидами и тем самым имеют решающее значение для возможности объективного знания. (С. 118-119)
Философия всегда склонна даже в наши времена к окончательным, категорическим суждениям. И тенденция эта существенно влияет на науку. Первые физики, например, считали детерминизм ньютонианской механики особым достоинством этой теории.
Но уже в XVIII столетии в физике появляется понятие вероятности, когда попытки разработать молекулярную теорию газов привели к истолкованию наблюдаемых величин (вроде давления) как средних по молекулярным столкновениям. В XIX столетии кинетика газов стала вполне развитой теорией, вслед за которой получила развитие статистическая механика, применимая ко всем субстанциям: газообразным, жидким, твердым. Понятие вероятности после систематического применения стало неотъемлемой частью физики.
Применение вероятностных концепций обычно оправдывалось человеческой неспособностью строго и точно решать задачи с огромным числом частиц, в то время как элементарные процессы, например атомные столкновения, предполагались подчиняющимися законам классической детерминистической физики.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Философия Науки. Хрестоматия"
Книги похожие на "Философия Науки. Хрестоматия" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Авторов Коллектив - Философия Науки. Хрестоматия"
Отзывы читателей о книге "Философия Науки. Хрестоматия", комментарии и мнения людей о произведении.