Георгий Рузавин - Логика и аргументация: Учебн. пособие для вузов.

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Логика и аргументация: Учебн. пособие для вузов."
Описание и краткое содержание "Логика и аргументация: Учебн. пособие для вузов." читать бесплатно онлайн.
Это первая в отечественной литературе попытка рассмотреть законы и принципы логики в тесной связи с аргументацией, используемой в практических и научных рассуждениях.
Основное внимание обращается на диалог как на ту реальную среду, в рамках которой происходят споры, дискуссии, диспуты и полемики. Изложение логических вопросов подчинено целям выработки навыков критического мышления в процессе аргументации.
Для студентов гуманитарных вузов, а также широкого круга лиц, желающих овладеть навыками аргументации как искусства рационального убеждения.
Такого рода высказывания, в котором одно из них что-то утверждает, а другое одновременно отрицает это, называются контрадикторными (противоречащими). Согласно известному нам закону непротиворечия подобные высказывания недопустимы в рассуждении, ибо из логически противоречивого утверждения следует любое высказывание: истинное или ложное.
Часто противоречивые высказывания называют также несовместными, потому что из несовместных высказываний логически следует противоречие.
Несовместность (противоречивость) высказываний, которая иногда встречается в рассуждениях, приводит к тому, что в нем оказываются допустимыми как истинные, так и ложные заключения. Именно этим обстоятельством широко пользовались античные софисты, стремившиеся обеспечить себе победу в споре любой ценой, в том числе и путем нарушения законов логики. Очевидно, что для этого они маскировали свои утверждения, ибо в противном случае оппоненты и слушатели всегда могли изобличить их в явных противоречиях. Однако никто не застрахован от противоречий и ошибок, но следует различать ошибки преднамеренные (сознательные) и ошибки не преднамеренные (неосознаваемые). Если первые, которые часто называют софизмами, следует разоблачать, то вторые, именуемые паралогизмами, необходимо исправлять. Но в обоих случаях логика служит надежным инструментом для анализа и раскрытия ошибок, и в особенности определения правильности логического следования заключения из его посылок.
В первом примере ошибочное заключение было связано с недостаточной точностью его словесной формулировки, во втором примере - противоречие было замаскировано другой формой символической записи второй части формулы. Ясно, что если бы противоречие было записано в виде: (х → у) и ¬(x → у), то сразу стало бы видно, что здесь перед нами противоречие, из которого, как теперь мы знаем, следует любое заключение: истинное, ложное и даже абсурдное. Нельзя, однако, считать, что противоречия раскрываются так легко. Как будет показано в гл. 6, противоречия зависят от ряда условий, выполнение которых обязательно для того, чтобы характеризовать их как противоречия, в частности чтобы высказывания, из которых одно отрицает другое, характеризовали предмет мысли в одно и то же время и в одном и том же отношении. С течением времени наши знания изменяются, и поэтому высказывания, которые характеризовали явления, также могут измениться и перестать противоречить друг другу.
Легко заметить, что все рассмотренные выше контрадикторные (противоречащие) высказывания могут быть представлены с помощью общей формулы (А ∧ ¬А), где члены конъюнкции А и ¬А являются выражениями метаязыка, т.е. языка, на котором мы говорим об объектном (предметном) языке. Метаязык служит для представления высказываний, которые выражаются с помощью переменных х1 , х2 , x3 ,..., xn. В дальнейшем формулы метаязыка будут применяться всякий раз, когда нам придется говорить о предметном языке, чтобы не загромождать изложение и не выписывать формулы этого языка.
Итак, любые сколь угодно сложные высказывания, которые могут быть представлены в форме конъюнкции утверждения и его отрицания, т.е. как А ∧ ¬А, представляют именно противоречие. Поэтому при любой комбинации входящих в них высказываний по истинностному их значению ("истина" или "ложь") будут приводить к ложному заключению. Другими словами, функция-высказывание, образованное из элементарных высказываний, всегда будет иметь своим значением "ложь". Поскольку из ложного утверждения можно получить как истину, так и ложь, постольку основной закон логики - закон непротиворечия - запрещает использовать противоречивые высказывания или формулы в рассуждении. Этот запрет выражается в требовании непротиворечивости рассуждения, которую часто называют также требованием совместимости (связности) рассуждения.
Если формула (А ∧ ¬А) является всегда ложным высказыванием, то ее отрицание, выражающее требование непротиворечивости, напротив, будет всегда истинным высказыванием, общезначимой формулой, или тавтологией, как стали называть такие высказывания вслед за Л. Витгенштейном. Следует, однако, не смешивать языковые тавтологии с логическими. Если в языке тавтология означает повторение той же фразы или предложения текста, то в логике она является тождественно истинным высказыванием. Не следует также путать тождественно истинные высказывания с законом тождества, который выражается формулой А → А, хотя последняя также выражает тавтологию.
Отсюда становится ясным, что тавтологии (тождественно истинные высказывания) можно использовать для представления всех законов логики или любых общезначимых ее формул. Действительно, закон непротиворечия, запрещающий противоречия в рассуждении, можно выразить формулой ¬(A ∧ ¬A), которая представляет собой тавтологию, в чем можно убедиться, построив для нее соответствующую таблицу истинности (табл. 10). То же самое можно сказать о законе исключенного третьего - (A ∨ ¬A) (табл.11).
Если из противоречия следует все, что угодно, т.е. "истина" или "ложь", то и тавтология следует из любого истинного или ложного высказывания. В самом деле, если в каждой строке таблицы заключение всегда будет истинным, то по правилу импликации оно может быть получено как из истинных, так и из ложных посылок. Напротив, никогда ложное следствие (противоречие) не может быть получено из истинных посылок.
Промежуточное положение между всегда истинными высказываниями (тавтологиями), с одной стороны, и всегда ложными (противоречивыми) высказываниями, с другой, занимают фактуальные утверждения. Их заключения могут быть как истинными, так и ложными, в зависимости от тех фактов, на которые опираются их посылки. В то время как истинность тавтологий или ложность противоречий может быть установлена чисто логическим анализом этих высказываний, значение истинности фактуальных высказываний требует обращения к действительным фактам. Другими словами, чтобы установить истинность или ложность фактуальных высказываний, необходимо исследовать реальные связи и отношения действительности, которые отображаются в соответствующих высказываниях, служащих посылками фактуальных заключений. На этом основании фактуальные высказывания часто называют также эмпирическими в противоположность аналитическим высказываниям логики и чистой математики. Но это противопоставление имеет относительный характер, ибо и в научных, и в повседневных рассуждениях аналитические высказывания логики применяются вместе с эмпирическими утверждениями, поскольку именно из эмпирических законов мы выводим логические заключения.
Всю новую информацию в науке формулируют с помощью эмпирических (фактуальных) высказываний, а выводы из нее получают с помощью законов (правил) логического следования.
3.6. Доказуемость и выводимость
До сих пор при определении истинности или ложности сложных высказываний, состоящих из простых, мы опирались на таблицы истинности. Но этот способ неудобен, громоздок, особенно когда приходится иметь дело с большим числом простых высказываний. Напомним, что при двух простых высказываниях таблица истинности содержит четыре строки, при трех - восемь, а для 12 высказываний потребовалось бы уже 4096 строк. Вот почему в логике наряду с табличным методом часто используют метод, опирающийся на вывод и доказательство одних высказываний из других.
По своей сути этот метод весьма похож на метод доказательства теорем, который известен из школьной геометрии. Доказательство там сводилось к логическому выводу теорем из аксиом, а также из ранее доказанных теорем, которые принимались в качестве истинных утверждений геометрии. В конечном итоге всякое доказательство сводится к логическому выводу теорем из аксиом, так как ранее доказанные теоремы также можно логически вывести из аксиом. Таким образом, отличие доказательства от логического вывода состоит в том, что при доказательстве мы принимаем посылки в качестве истинных высказываний, а при логическом выводе - в качестве допущений или гипотез. Отсюда становится ясным различие между истинностью и правильностью рассуждения или мышления, о котором шла речь в гл. 1. Истинность утверждения предполагает, во-первых, истинность посылок, из которых оно выводится, и, во-вторых, правильность логического вывода. Вывод может быть сделан из любых допущений, в том числе из ложных.
Хотя процесс доказательства в логике аналогичен доказательствам в математике, но между ними есть и существенное различие; оно заключается в том, что в математике мы имеем дело со специфическими математическими объектами - числами, фигурами, функциями и т.п., а в логике - с высказываниями, т.е. с логическими объектами. Чтобы отличить объекты разного уровня, для представления высказываний в математике используется предметный язык, а для анализа предметного языка - метаязык, на котором формулирует свои утверждения исследователь. Проще говоря, чтобы рассуждать об объектах предметного языка, необходим метаязык, выступающий в качестве языка второго уровня. Это обстоятельство следует всегда иметь в виду в дальнейшем.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Логика и аргументация: Учебн. пособие для вузов."
Книги похожие на "Логика и аргументация: Учебн. пособие для вузов." читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Георгий Рузавин - Логика и аргументация: Учебн. пособие для вузов."
Отзывы читателей о книге "Логика и аргументация: Учебн. пособие для вузов.", комментарии и мнения людей о произведении.