» » » » Генри Дьюдени - 200 знаменитых головоломок мира


Авторские права

Генри Дьюдени - 200 знаменитых головоломок мира

Здесь можно скачать бесплатно "Генри Дьюдени - 200 знаменитых головоломок мира" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство ООО "Фирма "Издательство ACT", год 1999. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Генри Дьюдени - 200 знаменитых головоломок мира
Рейтинг:
Название:
200 знаменитых головоломок мира
Издательство:
ООО "Фирма "Издательство ACT"
Год:
1999
ISBN:
5-237-02035-6
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "200 знаменитых головоломок мира"

Описание и краткое содержание "200 знаменитых головоломок мира" читать бесплатно онлайн.



Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.

Книга несомненно доставит большое удовольствие всем любителям этого жанра.






Сэр Хьюг сделал несколько общих замечаний, которые не безынтересны и сегодня.

— Друзья и домочадцы, — сказал он, — если те странные порождения моего бедного ума, о которых мы так приятно поговорили сегодня вечером, и оказались, быть может, малоинтересными для вас, пусть они послужат напоминанием разуму о том, что наша быстротекущая жизнь окружена и наполнена загадками.

РЕШЕНИЯ ЗАГАДОК РИДЛУЭЛСКИХ МОНАХОВ

41. Пронумеруйте корзинки, показанные на исходном рисунке, от 1 до 12 в направлении, в котором, как мы видим, двигается брат Джонатан. Начиная от 1, действуйте, как указано ниже, причем «1 в 4» означает, что надо взять рыбку из корзинки 1 и переложить ее в корзинку 4.

1 в 4, 5 в 8, 9 в 12, 3 в 6, 7 в 10, 11 в 2 и кончайте последний обход, перейдя к 1; при этом вы совершите всего три обхода. Можно действовать и по-другому: 4 в 7, 8 в 11, 12 в 3, 2 в 5, 6 в 9, 10 в 1. Легко решить задачу за четыре обхода, но решение с тремя обходами найти труднее.

42. Если бы аббат не требовал, чтобы в каждой келье жило не более трех человек и чтобы каждая келья была занята, то можно было бы оказать гостеприимство 24, 27, 30, 33, 39 или 42 паломникам. Но если принять 24 паломника так, чтобы на втором этаже было вдвое больше человек, чем на первом, и чтобы на каждой стороне было по 11 человек, то некоторые кельи пришлось бы оставить пустыми. Если, с другой стороны, мы попробуем разместить 33, 36, 39 и 42 паломника, то нам придется в некоторых кельях разместить более трех человек.

Таким образом, предполагавшееся число паломников равнялось 27, а поскольку их прибыло на 3 человека больше, то истинное число паломников составило 30. На приведенном здесь рисунке показано, как их можно разместить в каждом случае; при этом видно, что все условия выполнены.

43. Правильное решение показано на приведенном здесь рисунке. Никакой изразец не находится на одной прямой (вертикальной, горизонтальной или диагональной) с другим изразцом того же рисунка, причем использовано только три простых изразца. Если, расположив львов, вы ошибочно используете четыре изразца какого-либо другого рисунка вместо трех, то у вас окажется четыре места, куда придется поместить простые изразцы. Трюк заключается в том, чтобы взять четыре изразца одного рисунка и только по три изразца каждого другого рисунка.

44. Вопрос состоял в том, чего больше взял брат Бенджамин: вина из бутылки или воды из кувшина. Оказывается, ни того, ни другого. Вина было перелито из бутылки в кувшин ровно столько же, сколько воды было перелито из кувшина в бутылку. Пусть для определенности бокал содержал четверть пинты. В бутылке была 1 пинта вина, а в кувшине — 1 пинта воды. После первой манипуляции в бутылке содержались 3/4 пинты вина, а в кувшине — 1 пинта воды, смешанная с ¼ пинты вина. Второе действие состояло в том, что удалялась 1/5 содержимого кувшина, то есть 1/5 одной пинты воды, смешанной с 1/5 одной четверти пинты вина. Таким образом, в кувшине были оставлены 4/5 четверти пинты (то есть 1/5 пинты), тогда как из кувшина в бутылку было перелито равное количество (1/5 пинты) воды.

45. В бочонке было 100 пинт вина, и Джон-келарь 30 раз отливал оттуда по пинте, наливая взамен пинту воды. После первого раза в бочонке оставалось 99 пинт вина; после второго раза его оставалось (квадрат 99, деленный на 100); после третьего раза в бочонке оставалось (куб 99, деленный на квадрат 100); после четвертого раза там оставалась четвертая степень 99, деленная на куб 100, а после тридцатого раза в бочонке оставалась тридцатая степень 99, деленная на двадцать девятую степень 100. Это при обычном методе вычисления приведет к делению 59-значного числа на 58-значное! Однако с помощью логарифмов удается быстро установить, что в бочонке осталось количество вина, очень близкое к 73, 97 пинты. Следовательно, украденное количество приближается к 26,03 пинты. Монахам, конечно, не удалось получить ответ, поскольку у них не было таблиц логарифмов и они не собирались проводить долгие и утомительные выкладки, дабы «в точности» определить искомую величину, что оговорил в условии хитрый келарь.

С помощью упрощенного метода вычислений я удостоверился, что точное количество украденного вина составило

26,0299626611719577269984907683285057747323737647323555652999

пинты. Человек, который вовлек монастырь в вычисление 58-значной дроби, заслуживал сурового наказания.

46. Правильным ответом будет 602 176. Такое число крестоносцев могло образовать квадрат 776 × 776. После того как к отряду присоединился еще один рыцарь, можно было образовать 113 квадратов по 5329 (73 × 73) человек в каждом. Другими словами, 113 х (73)2— 1 = (776)2. Это частный случай так называемого уравнения Пелля.

47. Читатель знает, что целые числа бывают простыми и составными. Далее: 1 111 111 не может быть простым числом, ибо если бы оно было таковым, то единственными возможными ответами оказались бы те, что предложил брат Бенджамин и отверг брат Питер. Точно так же оно не может разлагаться в произведение более двух простых сомножителей, ибо тогда решение оказалось бы не единственным. И действительно, 1 111 111 = 239 × 4649 (оба сомножителя простые); поскольку каждая кошка уничтожила больше мышей, чем всего было кошек, то кошек было 239 (см. введение).

В общем случае данная задача состоит в нахождении делителей (если они имеются) чисел вида .

Люка в своей книге «Занимательная арифметика» приводит несколько удивительных таблиц, которые он позаимствовал из арифметического трактата под названием «Талкис», принадлежащего арабскому математику и астроному Ибн Албанна, жившему в первой половине XIII века. В Парижской национальной библиотеке имеется несколько манускриптов, посвященных «Талкис», и комментарий Алкаласади, который умер в 1486 г. Среди таблиц, приведенных Люка, есть одна, где перечислены все делители чисел указанного вида вплоть до n = 18. Кажется почти невероятным, что арабы того времени могли найти делители при n = 17, приведенные во введении к настоящей книге. Но Люка утверждает, что они имеются в «Талкис», хотя выдающийся математик читает их по-другому, и мне кажется, что их открыл сам Люка. Это, разумеется, можно было бы проверить, обратившись непосредственно к «Талкис», но во время войны сделать это оказалось невозможно.

Трудности возникают исключительно в тех случаях, когда n — простое число. При n = 2 мы получаем простое число 11. Для n = 3, 5, 11 и 13 делители соответственно равны (3 × 37), (41 × 271), (21 649 × 513 239) и (53 × 79 × 265 371 653). В этой книге я привел уже делители для n = 7 и 17. Делители в случаях n = 19, 23 и 37 неизвестны, если они вообще имеются[32]. При n = 29 делителями будут (3191 × 16 763 × 43 037 × 62 003 × 77 843 × 839 397); при n = 31 одним из делителей будет 2791; при n = 41 два делителя имеют вид (83 × 1231).

Что же касается четных и, то следующая любопытная последовательность сомножителей, несомненно, заинтересует читателя. Числа в скобках — простые.

Или мы можем записать делитель иначе:

В приведенных выше двух таблицах n имеет вид 4m + 2. Когда n имеет вид 4m, делители можно записать следующим образом:

[33]

При n = 2 мы получаем простое число 11; при n = 3 делителями будут 3 × 37; при n = 6 они имеют вид 11 × 3 × 37 × 7 × 13; при n = 9 получается 32 × 37 × 333 667. Следовательно, мы знаем, что делителями при n = 18 будут 11 × 32 × 37 × 7 × 13 × 333 667, тогда как остающийся множитель — составной и может быть представлен в виде 19 × 52 579. Это показывает, как можно упростить работу в случае составного n.

48. Наименьшее число шагов равно 118. Я приведу решение полностью. Белые кружки двигаются по часовой стрелке, а черные — в противоположном направлении. Ниже приведены номера кружков, которые следует перемещать в указанном порядке. Сдвигаете ли вы просто кружок на соседнее место или перепрыгиваете через другой кружок, станет ясно из расположения кружков, ибо альтернативы не будет. Ходы, указанные в скобках, следует совершать пять раз подряд: 6, 7, 8, 6, 5, 4, 7, 8, 9, 10, 6, 5, 4, 3, 2, 7, 8, 9, 10, 11 (6, 5, 4, 3, 2, 1), 6, 5, 4, 3, 2, 12 (7, 8, 9, 10, 11, 12), 7, 8, 9, 10, 11, 1, 6, 5, 4, 3, 2, 12, 7, 8, 9, 10, 11, 6, 5, 4, 3, 2, 8, 9, 10, 11, 4, 3, 2, 10, 11, 2. Таким образом, при заданных условиях мы сделали 118 ходов; черные лягушки поменялись с белыми местами, причем номера 1 и 12 также поменялись местами.

В общем случае потребуется 3n2 + 2n — 2 ходов, где n равно числу лягушек каждого цвета. Закон, управляющий последовательностью ходов, легко обнаружить, рассматривая наиболее простые случаи, где n = 2, 3 и 4.

Если вместо кружков с номерами 1 и 12 должны поменяться местами кружки с номерами 6 и 7, то потребуется n2 + 4n + 2 ходов. Если мы придадим и значение 6, как в нашем случае, то получится 62 хода.

КАК УДАЛОСЬ БЕЖАТЬ КОРОЛЕВСКОМУ ШУТУ

Хотя королевский шут и пообещал «потом все объяснить», записей, где бы говорилось, как он это сделал, не сохранилось. Поэтому я предложу читателю мою собственную точку зрения относительно вероятного решения предложенных загадок.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "200 знаменитых головоломок мира"

Книги похожие на "200 знаменитых головоломок мира" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Генри Дьюдени

Генри Дьюдени - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Генри Дьюдени - 200 знаменитых головоломок мира"

Отзывы читателей о книге "200 знаменитых головоломок мира", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.