» » » » Авинаш Диксит - Теория игр. Искусство стратегического мышления в бизнесе и жизни


Авторские права

Авинаш Диксит - Теория игр. Искусство стратегического мышления в бизнесе и жизни

Здесь можно купить и скачать "Авинаш Диксит - Теория игр. Искусство стратегического мышления в бизнесе и жизни" в формате fb2, epub, txt, doc, pdf. Жанр: Управление, подбор персонала, издательство МаннИвановФерберc6375fab-68f1-102b-94c2-fc330996d25d, год 2015. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Авинаш Диксит - Теория игр. Искусство стратегического мышления в бизнесе и жизни
Рейтинг:
Название:
Теория игр. Искусство стратегического мышления в бизнесе и жизни
Издательство:
неизвестно
Год:
2015
ISBN:
978-5-00057-311-2
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Теория игр. Искусство стратегического мышления в бизнесе и жизни"

Описание и краткое содержание "Теория игр. Искусство стратегического мышления в бизнесе и жизни" читать бесплатно онлайн.



Теория игр – это строгое стратегическое мышление. Это искусство предугадывать следующий ход соперника вкупе со знанием того, что он занимается тем же самым. Основная часть теории противоречит обычной житейской мудрости и здравому смыслу, поэтому ее изучение может сформировать новый взгляд на устройство мира и взаимодействие людей. На примерах из кино, спорта, политики, истории авторы показывают, как почти все компании и люди вовлечены во взаимодействия, описываемые теорией игр. Знание этого предмета сделает вас более успешным в бизнесе и жизни.






Каждый игрок должен был написать на листе бумаги слово «друг» или «враг». Если оба написали «друг», деньги делились поровну. Если один игрок написал «враг», а другой – «друг», весь выигрыш получал тот, кто написал «враг». Но если оба игрока написали «враг», ни один из них не получал ничего. Что бы ни сделала другая сторона, каждый игрок мог получить минимум столько же, сколько его соперник (или даже больше), если бы он написал «враг», а не «друг». Тем не менее почти половина участников шоу писали слово «друг». Даже когда призовой фонд увеличивался, вероятность того, что игроки выберут сотрудничество, оставалась прежней. Люди были в равной степени готовы сотрудничать, когда на кону стояло три и пять тысяч долларов. К таким же выводам пришли в ходе исследований Феликс Оберхольцер-Джи, Джоэль Вальдфогель, Мэтью Уайт и Джон Лист[36].

Если вы сомневаетесь, можно ли считать телевизионное шоу научным исследованием, обратите внимание на следующий факт: участникам телевикторины выплатили более 700 тысяч долларов. У этого эксперимента с дилеммой заключенных оказалось самое лучшее финансирование за всю историю экспериментов такого рода. Кроме того, по результатам викторины было сделано много важных выводов. Оказалось, что женщины в большей степени готовы идти на сотрудничество, чем мужчины: 53,7 процента (в первом сезоне – 47,5 процента). В первом сезоне участники шоу не имели возможности увидеть результаты других состязаний перед тем, как принимать решение. А вот во втором сезоне были оглашены результаты первых 40 эпизодов, что позволяло увидеть закономерность. Участники шоу учились на опыте своих предшественников. Если команда состояла из двух женщин, коэффициент сотрудничества повышался до 55 процентов, а когда в состав команды входили одна женщина и один мужчина, этот коэффициент падал до 34,2 процента. У мужчин в этом случае коэффициент сотрудничества тоже снижался до 42,3 процента. В целом готовность участников шоу сотрудничать уменьшалась на десять пунктов.

Когда группу участников эксперимента несколько раз разбивают по парам, каждый раз формируя новые пары, число людей, которые выбирают сотрудничество, со временем сокращается. Тем не менее это число не сводится до нуля; вместо этого формируется небольшая группа участников эксперимента, неизменно отдающих предпочтение сотрудничеству.

Если одна и та же пара играет в базовую игру с дилеммой заключенных много раз подряд, в большинстве случаев образуется весьма значительная последовательность взаимного сотрудничества; это продолжается до тех пор, пока один из игроков уже в самом конце серии игр не выберет стратегию предательства. Именно это произошло в ходе первого эксперимента с дилеммой заключенных. Как только Меррил Флад и Мелвин Дрешер придумали эту игру, они предложили двум своим коллегам сыграть в нее 100 раз[37]. В 60 раундах игры оба участника выбрали стратегию сотрудничества. Длинный период взаимного сотрудничества продолжался с 83-го по 98-й раунд, пока в 99-м раунде один из игроков не выбрал стратегию предательства.

Если следовать строгой логике теории игр, то в действительности этого не должно было произойти. Если игра повторяется ровно 100 раз, она представляет собой серию игр с одновременными ходами, а значит, мы можем применить к ней логику обратных рассуждений. Определите, что произойдет в сотом раунде. Это последний раунд игры, поэтому предательство не может быть наказано в следующих раундах. В таком случае, согласно принципу доминирующей стратегии, оба игрока должны выбрать в последнем раунде стратегию предательства. Но как только принимается такое предположение, последним становится, по сути, 99-й раунд. Хотя игрокам предстоит еще один раунд, выбор стратегии предательства в 99-м раунде не может быть наказан в 100-м раунде, поскольку сделанный в этом раунде выбор предопределен. Следовательно, логика доминирующей стратегии применима и к 99-му раунду. Эти рассуждения можно продолжить до первого раунда. Однако в реальной игре, будь то в лаборатории или в реальном мире, игроки склонны игнорировать эту логику и пытаются извлечь выгоду из взаимного сотрудничества. Поведение, которое на первый взгляд может показаться иррациональным (отказ от доминирующей стратегии), оказывается правильным выбором при условии, что другие игроки ведут себя столь же иррационально.

Специалисты по теории игр предлагают следующее объяснение этого феномена. В этом мире есть люди, которые всегда поступают с другими так, как поступают с ними; такие люди готовы сотрудничать до тех пор, пока другие делают то же самое. Предположим, вы не принадлежите к числу этих достаточно милых людей. Если бы в игре с конечным числом повторений вы вели себя так, как того требует ваш тип личности, вы начали бы с обмана. Это раскрыло бы ваш характер другому игроку. Для того чтобы скрыть правду (хотя бы на какое-то время), вам придется вести себя достойно. Зачем вам делать это? Предположим, вы начнете игру, поступив порядочно. Если другой игрок не относится к тем, кто всегда платит той же монетой, он подумает, что вы, возможно, принадлежите к числу тех немногих людей, которых можно назвать порядочными. Временное сотрудничество может принести определенную выгоду, поэтому другой игрок, желая получить эту выгоду, попытается ответить на вашу порядочность тем же. Это пойдет на пользу и вам. Разумеется, при этом вы (так же, как и другой игрок) планируете перейти к стратегии предательства к концу игры. Тем не менее на начальном этапе игры вы оба можете поддерживать взаимовыгодное сотрудничество. Хотя каждый игрок ждет момента, когда удастся воспользоваться порядочностью другого, этот взаимный обман приносит пользу им обоим.

В ходе некоторых экспериментов вместо распределения испытуемых по парам и проведения серии игр с дилеммой заключенных организуется большая игра с участием всей группы. Мы хотим привести здесь особенно интересный и поучительный пример. Профессор Реймонд Батталио из Техасского сельскохозяйственно-машиностроительного университета организовал следующую игру с участием 27 студентов[38]. Все студенты, якобы владельцы гипотетических компаний, должны были решить (одновременно и независимо друг от друга, написав свое решение на листике бумаги), какой объем продукции будет выпускать их компании: 1, который поможет сохранить совокупное предложение на низком уровне, а цены – на высоком, или 2, который позволит получить дополнительный доход за счет других. В зависимости от числа студентов, которые выберут объем продукции 1, деньги будут выплачены им по следующей схеме:



На графике эта схема представлена в наглядном виде.



Игра построена таким образом, чтобы студенты, выбравшие 2 («предать»), всегда получали на 50 центов больше, чем студенты, выбравшие 1 («сотрудничать»), но чем больше студентов выбирают 2, тем меньше их совокупный выигрыш. Предположим, все 27 студентов начинают с выбора 1; в таком случае каждый из них получит по 1,08 доллара. А теперь представьте себе, что один из них переключается на вариант 2. В игре остается 26 студентов, выбравших 1; каждый из них получит по 1,04 доллара (на 4 цента меньше, чем по первоначальному плану), но студент, изменивший стратегию, получит 1,54 доллара (на 46 центов больше). Такое распределение выигрыша не зависит от первоначального числа студентов, намеревающихся выбрать 1, а не 2. В данном случае вариант 2 – это доминирующая стратегия. Каждый студент, который переключается со стратегии 1 на стратегию 2, увеличивает свой выигрыш на 46 центов, но в то же время сокращает выигрыш каждого из оставшихся 26 участников игры на 4 цента. Когда все участники игры начнут действовать эгоистично, пытаясь получить максимальный выигрыш, каждый из них получит по 50 центов. Если бы они могли успешно объединить свои усилия и выбрать такой образ действий, который свел бы их общий выигрыш к минимуму, каждый из них получил бы по 1,08 доллара. А как вы сыграли бы в эту игру?

Когда эта игра проводилась на практике (один раз без обсуждения в группе, другой раз с обсуждением, для того чтобы выработать согласованные действия), число студентов, которые были готовы сотрудничать и выбрали вариант 1, колебалось от 3 до 14. В последней игре, в которой студенты объединили свои усилия, их было 4. Совокупный выигрыш составил 15,82 доллара, что было на 13,34 доллара меньше, чем в том раунде игры, в котором студентам удалось договориться. «Я больше никогда в жизни не стану никому доверять!» – недовольно пробормотал студент, который больше всех выступал за согласованные действия. Но каким был его выбор? «Ну, я выбрал 2», – сказал он. Йоссариан понял бы его.

В современных экспериментах с играми в дилемму заключенных с несколькими участниками используется вариант, получивший название «игра со взносами в общий фонд». Каждому игроку предоставляется некая начальная сумма, скажем, 10 долларов. После этого он решает, какую часть этой суммы оставит себе и какую отдаст в общий фонд. Затем экспериментатор удваивает сумму, накопившуюся в общем фонде, и делит ее поровну между всеми участниками игры (как теми, которые сделали взнос в общий фонд, так и теми, которые оставили всю сумму себе).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Теория игр. Искусство стратегического мышления в бизнесе и жизни"

Книги похожие на "Теория игр. Искусство стратегического мышления в бизнесе и жизни" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Авинаш Диксит

Авинаш Диксит - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Авинаш Диксит - Теория игр. Искусство стратегического мышления в бизнесе и жизни"

Отзывы читателей о книге "Теория игр. Искусство стратегического мышления в бизнесе и жизни", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.