Александр Долгин - Экономика символического обмена

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Экономика символического обмена"
Описание и краткое содержание "Экономика символического обмена" читать бесплатно онлайн.
Еще одна разновидность рейтингов – профессиональная медиаметрия[312]; это инструмент, предназначенный для регулирования отношений СМИ и рекламных служб. Потребительской навигации он может служить лишь по касательной. К тому же здесь в полной мере присутствует весь набор проблем: косвенность измерений воспринимаемого качества, сомнительная достоверность и усредненность данных. То же относится и к рейтингам нравственности, находящимся в ведении Американской Киноассоциации[313].
Рейтинги этого последнего типа хотя и касаются содержания, но никак не указывают на его качество. Они предназначены в основном родителям, как подсказка, какие фильмы можно смотреть детям, а какие нет, а также для ограждения впечатлительных натур от непристойности. Они родились на волне общественного протеста против показа малолеткам неприличных сцен. Крупные компании-мейджоры создали Hays Code и соответствующий Hays Office – регулирующий орган, действовавший с 1930 по 1967 год[314]. В его задачи входило жесткое ограничение в кинопродукции США непристойных выражений, насилия, секса, оскорбления прав верующих, разжигания национальной розни, злоупотребления наркотиками и т. п.[315]
Первоначально рейтинг состоял из четырех ступеней: G, M, R, X (позже M заменили на PG). Две первые позиции разрешали доступ всем, М только предостерегала родителей, что фильм может не подойти младшему возрасту. Третья, R, позволяла детям смотреть ленту в сопровождении взрослых, а последняя, X – была противопоказана детям всех возрастов[316]. Со временем категорию X приравняли к порнографии и запретили во многих штатах. Фильмы с рейтингом G считались детскими и выпускались редко; большинство лент выходило в категориях PG и R. В результате первоначальная четырехступенчатая система за малыми исключениями свелась к двухступенчатой. В попытке расширить возможности системы в 1984 г. в рейтинг была введена новая позиция – PG-13, средняя между PG и R. Позже была добавлена категория NC-17. Ее ввели как альтернативу X: планировалось, что эта литера будет обозначать арт-хаусные фильмы, в то время как порнографические ленты по-прежнему будут идти под знаком X. Однако вскоре продюсеры порнофильмов начали выставлять свои работы на рейтинг в качестве арт-хаус-фильмов. Таким образом, NC-17 по существу заменила категорию X. На данный момент картин с рейтингом R производится больше, чем любых других типов, а самый успешный фильм года почти всегда относится к разряду PG-13. Вместо того чтобы выполнять роль нейтрального классификатора, PG-13 стал влиять на тип выпускаемого кино. В 1996 году фильмы с рейтингом PG-13 составили 18,9% от общего количества всех созданных фильмов и в то же время заработали 34,1% сборов кинопроката. Затем PG-13 перевели в категорию фильмов для семейного просмотра. Так кинокомпаниям удалось ввести в ленты больше остроты, секса и насилия, не жертвуя конкурентоспособностью. Продюсеры заранее прикидывают, какая категория им нужна, и снимают картину так, чтобы она встраивалась в определенные рамки. А совсем недавно задача охранения нравственности в кино получила эффектное техническое решение. Появилась специальная программа, позволяющая зрителю при просмотре картин на DVD самостоятельно делать в них купюры, адаптируя для семейного просмотра.
Значение рейтингов для экономики колоссально и однозначно положительно. Благодаря им бизнес обрел почву под ногами: столь необходимая ему обратная связь предложения со спросом установилась наилучшим из всех возможных способом, поскольку ранжирование не порождает для предпринимателей никаких отрицательных внешних эффектов. Для культуры же значение рейтингов неоднозначно. Ей как воздух необходима обратная связь, но более содержательная. Создавая иллюзию потребительской рефлексии, рейтинги скорее сбивают культуру с правильного пути, нежели указывают на него. Они в минимальной степени служат культурной навигации, скорее – это буйки на пути ухудшающего отбора, обозначающие фарватер.
Глава 2.7. Обзор рекомендательных систем[317]
В самом общем виде рекомендация – это прогнозирование оценки до того момента, как человек сам опробовал объект. Прогноз составляется на основе анализа предшествующих предпочтений покупателя или любой другой информации о нем[318]. Услуга состоит в следующем: из всего разнообразия книг, CD, фильмов, ресторанов и т. п. для конкретного потребителя выбирается продукт с наивысшей ожидаемой полезностью[319].
На каждого клиента рекомендательной системы[320] составляется индивидуальный профиль, в котором учитываются его потребительские предпочтения, а также (при необходимости) возраст, пол, доход, семейное положение и т. д. Точно так же по определенным правилам описываются и товары. Например, в сервисе по фильмам каждая картина может быть представлена названием ленты, жанром, режиссером, годом выпуска, главными актерами и т. д. Первоначально в базу заносятся оценки потребителей, выставленные уже известным им товарам. Например, в системе MovieLens[321] пользователи начинают с того, что проставляют баллы определенному количеству фильмов, которые они уже посмотрели. Системы способны выдавать рекомендации либо в виде перечня товаров наиболее подходящих данному потребителю, либо в виде списка потребителей, для которых предпочтительны определенные продукты (как подчеркивалось в первой главе, это различие на практике оказывается принципиальным). Рекомендации могут генерироваться тремя способами:
1. Контентным: человеку рекомендуют товары, сходные с теми, которые он выбрал ранее.
2. Методом коллаборативной фильтрации: потребителю рекомендуют товары, которые вычисляются по оценкам людей со схожими вкусами, уже опробовавших данный продукт и поделившихся своими суждениями.
3. Гибридным методом, сочетающим в себе два предыдущих.
Кроме перечисленных существуют вспомогательные системы (кратко упоминаются ниже), а также системы социальной навигации, которые не являются рекомендательными и здесь не рассматриваются. В последнем случае предпочтения людей выявляют на основании прямых и косвенных данных: интернет-сообщений, историй пользования системой, гиперссылок и т. д. Они визуализируют взаимодействие человека с компьютером и помогают путешествующим по сети[322].
2.7.1. Контентные методы выработки рекомендаций
В рекомендательных системах контентного типа полезность товара выводится из потребительской оценки сходных продуктов. Например, для того чтобы посоветовать человеку фильмы, контентная система пытается найти сходство между различными картинами, которые прежде получили у него высокую оценку (одни и те же актеры, режиссеры, жанры и т. д.). Подобные рекомендации основаны на принципе «найдите для меня вещи, подобные тем, что мне нравились в прошлом». В основе контентой рекомендательной системы лежат методы поиска информации[323], ее сопоставления и фильтрации[324]. Этот подход чаще всего используют для текстов – документов, веб-сайтов, блогов и т. п. Профиль предпочтений клиента формируется на основе информации, которую получают от него либо напрямую, анкетированием, либо косвенно. Контент обычно описывается при помощи ключевых слов[325]. Профиль потребителя, указывающий на его предпочтения, создается путем выявления ключевых слов в контенте, которому данный человек ранее уже вынес оценку. Профиль потребителя и профиль контента могут быть представлены как векторы, а полезность данного контента для данного потребителя определяется величиной угла между ними[326]. В частности, человеку, интересующемуся определенной темой, будут рекомендованы статьи, в которых использовано много терминов (ключевых слов) из его пользовательского профиля.
2.7.1.1. Недостатки
Их в контентном методе несколько. Во-первых, машинный анализ годится не для всяких объектов. Так, сильно осложнена работа с мультимедийными приложениями, графикой, аудио- и видеоматериалами. (Хотя в последнее время в этой области наблюдается бурный прогресс.) Другая проблема данного метода в том, что два разных предмета, представленных одинаковыми профилями, неразличимы. В частности, с помощью контентных систем невозможно отличить хорошую статью от плохой, если их лексикон близок. Это касается и потребительских профилей, поэтому рекомендации, основанные на выборе якобы схожих людей, могут быть низкого качества. На деле оказывается, что профили близки, а люди, стоящие за ними, разные. Еще один очевидный недостаток – узость рекомендаций. Потребителю не могут рекомендовать товары, отличные от тех, которые ему уже знакомы. С другой стороны, ему могут настойчиво предлагать объекты, слишком похожие на те, что ему хорошо известны.
2.7.2. Вспомогательные системы
Эти системы не вычисляют рекомендации. Их смысл в другом: служить инструментом обмена рекомендациями. Первая в мире рекомендательная система Tapestry, разработанная в Xerox PARC, относилась к вспомогательному типу[327]. Популярные ныне веблоги (weblog) – пример такой системы.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Экономика символического обмена"
Книги похожие на "Экономика символического обмена" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Александр Долгин - Экономика символического обмена"
Отзывы читателей о книге "Экономика символического обмена", комментарии и мнения людей о произведении.