» » » » Александр Долгин - Экономика символического обмена


Авторские права

Александр Долгин - Экономика символического обмена

Здесь можно скачать бесплатно "Александр Долгин - Экономика символического обмена" в формате fb2, epub, txt, doc, pdf. Жанр: Экономика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Александр Долгин - Экономика символического обмена
Рейтинг:
Название:
Экономика символического обмена
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Экономика символического обмена"

Описание и краткое содержание "Экономика символического обмена" читать бесплатно онлайн.








1.3.2.6. Кто кого фильтрует?

По мере того как число участников коллаборативной фильтрации растет, нарастают проблемы обработки данных. При нескольких миллионах пользователей ограничения скорости операций становятся ощутимыми. Поэтому, когда рекомендательный сервис используют в качестве придатка к торговым системам, фильтрацию по типу «потребитель-потребитель» заменяют цепочкой «объект-объект» (см. рисунок). Этот принцип экономичнее, в частности из-за отсутствия необходимости часто пересчитывать взаимосвязи между клиентами[141]. В этот момент и закладываются предпосылки для незаметной переориентации метода с нужд потребителей на интересы продавцов.

В основе пообъектной фильтрации – фиксация всех оценок, выставленных пользователями системы различным объектам (это могут быть товары, услуги, учреждения и т. д.), и анализ сходства между объектами, что не совсем то же самое, что сходство между людьми. Например, берется конкретный продукт – книга – и выявляются все прочие книги, получившие от различных потребителей сходную оценку. Хотя с точки зрения математики подсчеты «объект-объект» вроде идентичны данным, полученным из оценок потребителей, но во втором случае отбираются продукты, нужные людям, а в первом – люди, «нужные» для продвижения продуктов. В объектной фильтрации сходство между товарами устанавливается по профилю оценок потребителей, а в «чело­веческой» версии – по ряду персонально выделенных и значимых параметров. Разница именно в том, что в коллаборативной фильтрации с непосредственным участием потребителей те сами расставляют акценты, а пообъектная схема обходится без этого. Методы были бы идентичны, если бы в поклиентской версии фильтрации учитывались все оценки всех покупок, совершаемых потребителями.

Пренебрегать прямо высказанными оценками – это все равно что судить о совпадении вкусов людей по их знакомству с блокбастерами. К тому же очевидно, что факт потребления чего-либо далеко не всегда равнозначен удовлетворению. Существует зазор между интересом к продукту и его итоговой оценкой. Неспроста модераторы Ringo не ограничивались часто ранжируемыми артистами, а оставляли место для индивидуальных предпочтений. Расхождение между оплатой и удовлетворением особенно существенно тогда, когда нет повторного потребления, и накопления информации (позитивной или негативной) от предыдущих покупок не происходит. Именно поэтому культурная продукция, потребляемая однократно, оказывается в числе наиболее проблемных случаев для пообъектной фильтрации. Здесь между интересом, ожиданиями и конечными впечатлениями может пролегать пропасть. В предметной сфере ситуация менее острая.

В потребительской версии люди сигнализируют о своих итоговых эмоциях и впечатлениях, а в пообъектной – товары указывают на свою способность притягивать внимание людей, что, очевидно, заслуга не только их качества, но еще и рекламы и цены[142]. Таким образом, люди дают экспертную оценку товаров с большей пользой для себя. В особенности если учитывать, что их вовлеченность в процесс сама по себе позитивна. В областях, где люди потребляют приблизительно одинаковый ассортимент, например одни и те же автомобили или стиральные порошки, совпадение списка покупок не выявляет различий во вкусе. Другое дело, что оно указывает на схожесть статусов, и в этом смысле пообъектная фильтрация оказывается информативной. В то же время очевидно, что она скорее подогревает стремление к подражанию, чем к отличиям, и это на руку бизнесу.

Как отмечалось, анализ сходства в рамках объектной фильтрации не нужно делать каждый раз, что обеспечивает скорость ответа на запрос. Именно это и требуется Amazon и прочим торговцам для того, чтобы успеть напичкать клиентов рекомендациями, пока они пребывают в покупательском настроении. Люди ведут поиски и покупки в интернете, оставляя на различных сайтах следы своего присутствия, а на них попутно сыплется информация то ли рекомендательного, то ли рекламного свойства. Простые клики на веб-страницы засчитываются системой как акты потребительского ранжирования. Но остановка внимания на некоем предложении, а может быть просто пауза по сторонним причинам – не такой уж точный показатель заинтересованности человека в данной вещи. К тому же, далеко не все покупки совершаются в интернете, поэтому выборка покупательских предпочтений, сделанная только на основе этих данных, не вполне репрезентативна. Коллаборативная фильтрация с непосредственным участием потребителя пусть медленнее, но вернее служит его интересам.

1.3.2.7. Бизнес-версия коллаборативной фильтрации, или зачем поступаться принципами?

Рекомендательная система, интегрированная с процессом продаж так, чтобы подсовывать товары в то время, когда что-то приобретается или ищется, ориентирована на интересы бизнеса. Она не требует активности со стороны пользователя. Все, что от него нужно – это вступить на торговую площадь. Тут его и берут в оборот. Это соображение – ковать железо, пока горячо – стало решающим в эволюции коллаборативной фильтрации. Держать оценки наготове и быстро выдавать их, как того требуют интересы бизнеса, никого ни о чем не спрашивая, – данная логика подвела к скрытому этическому компромиссу. Как только решили не беспокоить клиента по таким пустякам, как его мнение о качестве, дело все больше стало клониться к программированию поведения.

Если для обычных товаров пообъектная фильтрация в ряде случаев дает искомый результат, то с навигацией в культурном предложении все обстоит хуже. Хотя справедливости ради надо отметить, что музыка в ряду культурных благ стоит особняком. Поскольку к хорошим мелодиям люди могут возвращаться неоднократно, потребительские оценки с успехом заменяет подсчет числа прослушиваний той или иной песни. Это тот редкий случай, когда неявные предпочтения адекватно репрезентируют явные. На этом основаны музыкальные сервисы Audioscrobbler (ныне Last.Fm), Launchcast Radio и др.[143] На компьютер, на котором прослушивается музыка, закачивается специальный программный модуль. Больше от пользователя ничего не требуется[144]: его не беспокоят просьбами ранжировать музыкальные композиции, не задают вопросов о настроении и т. д. Модуль отслеживает музыку, которую проигрывает человек, и передает информацию на сервер. Он также создает персональные веб-страницы пользователей сервиса, на которых демонстрируются списки прослушанного. Предполагается, что после того как прозвучало более половины песни, ее смело можно причислять к понравившимся и вносить в профиль. И все же в такой методике есть скрытые ограничения. На сервер поступает информация только о той музыке, которая звучит на компьютере, т. е. в определенной обстановке, в частности в офисе. Очевидно, в этих условиях включишь не всякую музыку, а например фоновую. В автомобиле будут слушать другие мелодии, на Hi-End аппаратуре – третьи. Так что автоматически формируемый потребительский профиль неизбежно получается деформированным.

Если же речь идет о произведениях однократного потребления – книгах, пьесах, фильмах и т. п., результаты дает только метод фильтрации, основанный на рефлексии потребителей. Чтобы повысить точность рекомендаций в пообъектной схеме, базу данных дополняют сведениями о клиентах. Для этого их классифицируют по социально-демографическому принципу, вычленяя в лучших традициях маркетинга фиксированные группы, как-то: средний класс, живущий в пригороде; молодой горожанин – профессионал; религиозный сельчанин с велосипедом и т. д., – и затем пытаются разбить население на кластеры. Нет информации, которую не стремились бы вовлечь в оборот: академические успехи, опыт работы, семейное положение, возраст, пол, раса, почтовый индекс, кредитная история, участие в фокус-группах и т. д., и т. п. Чтобы определить, чего захотят потребители, сначала пытаются установить, кто они такие. Это довольно трудоемко, бесполезно, а в чем-то и неприятно, поскольку на такую информацию с высокой вероятностью найдется заказчик, и это – не потребитель культуры, а кто-то другой с не вполне ясными намерениями.

Изюминка коллаборативной фильтрации по схеме «потребитель – потребитель» состоит как раз в том, чтобы не отягощать процесс ничем лишним. Система не очень хочет знать, кто есть кто, ей нужны лишь добровольно высказанные предпочтения. Только из них выводится, кто к какому культурному сообществу относится. Группы не являются чем-то постоянным, они меняются вместе с людьми. Например, некто не видел ни одного фильма Бунюэля, но если завтра он посмотрит «Этот смутный объект желания» и присвоит ему высокий балл в системе MovieLens, то группа людей, ранее определявшаяся как «точно такие же, как он», немедленно изменится.

Версия фильтрования, опирающаяся не на явно выраженные, а на угадываемые предпочтения, подозрительно приспособлена для коммерческих интересов. В ней теряется самое главное: опора на воспринимаемое качество, поэтому она хуже служит интересам потребителей. Хотя сегодня, пока рекомендательные системы только отлаживаются, нет смысла подозревать кого-то в манипуляциях. Например, Amazon демонстрирует верх корректности – клиентам предоставляется возможность «обучить» систему, сообщая ей свое мнение о точности рекомендаций. Сама по себе состыковка информационного фильтра с торговлей может быть и не лишена смысла, но по мере того как популярность подобных сервисов будет расти, искушение манипулировать ими тоже будет увеличиваться. Например, издатели, вмешиваясь в процесс ранжирования, могут начать рекомендовать свои собственные книги. А уж авторам и их окружению удержаться от подкручивания счетчиков будет крайне сложно. М. О’Махони показал, что самые совершенные системы фильтрации неустойчивы к проискам злоумышленников[145]. Они на это не рассчитаны. Ведутся разработки защиты от «рекомендационного спама», но о практическом применении говорить пока рано[146]. В одном из таких пилотных вариантов защиты честные баллы от «злонамеренных» отделяют математическими методами. Добропорядочных пользователей собираются поощрять скидками и бонусами, а обманщиков наказывать. Однако, когда коллаборативная фильтрация распространится повсеместно, от преднамеренных подлогов[147] будет отгородиться намного сложней. Существует риск того, что система рекомендаций, как перекошенная рулетка, будет настроена на выдачу только определенных подсказок. Отсюда вопрос: эта система рекомендует или конвоирует к нужному прилавку? И вообще, мыслимое ли дело, чтобы коммерсанты сами, да еще и бескорыстно, прокладывали навигационные тропы потребителям? Стоит ли доверять рекомендациям поставщиков?


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Экономика символического обмена"

Книги похожие на "Экономика символического обмена" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Долгин

Александр Долгин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Долгин - Экономика символического обмена"

Отзывы читателей о книге "Экономика символического обмена", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.