» » » » Карлос Мадрид - Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление


Авторские права

Карлос Мадрид - Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление

Здесь можно скачать бесплатно "Карлос Мадрид - Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство «Де Агостини», год 2014. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Карлос Мадрид - Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление
Рейтинг:
Название:
Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление
Издательство:
«Де Агостини»
Год:
2014
ISBN:
978-5-9774-0682-6; 978-5-9774-0727-4 (т.32)
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление"

Описание и краткое содержание "Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление" читать бесплатно онлайн.



Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата. Эта книга наверняка поможет читателю почувствовать очарование хаоса.






Математик и физик Александр Ляпунов (1857–1918), работавший примерно в то же время, что и Пуанкаре, использовал более количественный подход к теории устойчивости. Вместо того чтобы, подобно Пуанкаре, изучать геометрию траекторий, Ляпунов рассмотрел числа — так называемые экспоненты Ляпунова — которые служили индикаторами неустойчивости. Если какая-либо из этих экспонент была положительной, то траектории удалялись друг от друга (экспоненциально). В этом случае система была нестабильной.

В 1950-е годы основной темой семинаров Андрея Колмогорова (1903–1987) в Московском государственном университете была небесная механика: и он, и его ученик Владимир Игоревич Арнольд (1937–2010) занимались теоретическим изучением устойчивости динамических систем небесной механики, взяв за основу труды Пуанкаре и Ляпунова. Результатом этих исследований стала теорема, представленная Колмогоровым в 1954 году на Международном математическом конгрессе в Амстердаме.

Позднее юный немецкий математик Юрген Курт Мозер (1928–1999) захотел написать обзорную статью по этой теме для журнала Mathematical Reviews. Мозер настолько интересовался этой темой, что совершил поездку в Советский Союз, там он познакомился с Арнольдом, и результатом их совместной работы стала широко известная (среди специалистов) теория Колмогорова — Арнольда — Мозера. Эта теория описывает, что происходит, когда в интегрируемой (линейной) системе возникают неинтегрируемые (нелинейные) возмущения. Если эти возмущения достаточно малы, то большинство орбит будут подобны стабильным и квазипериодическим, то есть никогда не будут слишком далеко отклоняться от периодических орбит системы. В этой же ситуации будут наблюдаться и другие орбиты, предсказать поведение которых нельзя. Таким образом, в океане хаоса будут формироваться островки стабильности.

Если рассматривать Солнечную систему, то, поскольку масса планет по сравнению с массой Солнца пренебрежимо мала, в первом приближении можно пренебречь силами, действующими между планетами, и получить интегрируемую систему, в которой каждая планета будет двигаться по прекрасному кеплеровому эллипсу, что доказал Ньютон. Но если мы начнем учитывать взаимодействие между планетами, система уже не будет интегрируемой, о чем нам известно благодаря трудам Пуанкаре.

Планеты перестанут описывать идеальные эллипсы, и вполне возможно, что одна из них даже начнет движение по хаотической орбите и в конце концов покинет пределы Солнечной системы. С 1954 года благодаря теории Колмогорова — Арнольда — Мозера мы знаем, что незначительные отклонения нарушают равномерность лишь частично. И если предположить, что силы взаимодействия планет не слишком велики, то большинство их орбит будут близки по форме к эллипсам. Это не означает, что абсолютно все движения в пределах Солнечной системы должны быть равномерными — достаточно, чтобы равномерными были большинство движений.

Некоторые малые тела Солнечной системы могут двигаться по хаотическим орбитам. В конечном итоге они либо столкнутся с другими телами, либо покинут пределы Солнечной системы. Возможно, именно такой была судьба Хирона — астероида из группы Кентавров (наполовину астероида, наполовину кометы), движущегося по хаотической и неустойчивой орбите между Сатурном и Ураном.



Теория КолмогороваАрнольда — Мозера описывает островки регулярности в море хаоса.


Еще одной иллюстрацией теории Колмогорова — Арнольда — Мозера стало численное исследование, проведенное французским астрономом Мишелем Эно (род. 1931) совместно с аспирантом Карлом Хайлсом (род. 1939) в 1962 году при помощи нового инструмента — компьютера. Эно и Хайле хотели изучить движение звезд в галактиках в зависимости от их энергии. При низких энергиях решения уравнений были, как и ожидалось, периодическими или квазипериодическими. При высоких энергиях компьютер показывал, что периодические траектории постепенно размываются, и возникает целое море хаоса, в котором лишь иногда наблюдаются островки стабильности. Это была хаотическая система Эно — Хайлса.

Однако влияние советской школы этим не ограничивалось: во время холодной войны основные результаты, полученные советскими математиками, были переведены на английский. Европейские и американские математики смогли ознакомиться с ними благодаря трудам Соломона Лефшеца (1884–1972), которые пришлись как нельзя кстати. Этот инженер-химик родился в Москве, учился в Париже, переехал в США, где в результате несчастного случая (во время эксперимента произошел взрыв) потерял обе руки, после чего он начал заниматься математикой. Математика помогла Лефшецу справиться с сильной депрессией, и позднее он даже получил должность преподавателя в Принстоне. Чтобы писать на доске, ученый использовал пластиковые протезы и перед лекциями просил учеников прикрепить кусочек мела к его правой руке. Его сотрудничество с советскими математиками по окончании Второй мировой войны сыграло важнейшую роль в развитии теории динамических систем, а вместе с ней — ив развитии зарождавшейся теории хаоса.


Лоренц: кофе, компьютер, бабочка

Вернемся в Соединенные Штаты. Там в 1963 году юный метеоролог из MIT по имени Эдвард Нортон Лоренц (1917–2008), который учился у Биркхофа в Гарварде, сформулировал модель из трех обыкновенных дифференциальных уравнений для описания движения потока жидкости под действием градиента температур. Эта модель представляла собой упрощенное описание конвекции в атмосфере, то есть движение потоков горячего и холодного воздуха в условиях заметной разницы температур: горячий воздух поднимается вверх и, достигнув верхних слоев атмосферы, охлаждается, после чего вновь опускается к поверхности Земли. При некоторых значениях постоянных дифференциальные уравнения модели описывали начало нестационарной конвекции.

Однажды во время поиска численных решений с помощью компьютера Royal МсВее LGP-30, первого персонального компьютера в мире, Лоренц отлучился выпить чашку кофе и, вернувшись, обнаружил, что система демонстрирует крайне нестабильное, хаотическое поведение. Компьютер распечатал список очень странных значений, в которых не прослеживалось какой-либо закономерности. Лоренц счел, что произошла какая-то ошибка, и повторил расчеты. Но всякий раз он получал те же необычные результаты. Списки чисел начинались с почти одинаковых значений, которые затем становились принципиально различными. Лоренц по счастливой случайности столкнулся с феноменом чувствительности к начальным условиям.

Он заметил, что система была крайне неустойчивой даже при малейших изменениях. Незначительное изменение начальных условий приводило к тому, что конечные состояния системы оказывались принципиально разными. Предоставим слово самому Лоренцу:

«Два неотличимо различающихся состояния могут породить два существенно различных состояния. Если допущена какая-либо ошибка при наблюдении текущего состояния системы (а для реальных систем это, по всей видимости, неизбежно), то дать надежный прогноз состояния системы в далеком будущем будет невозможно».

Позаимствованный Лоренцем образ в итоге занял важное место в науке: взмах крыльев бабочки в Бразилии мог вызвать торнадо в Техасе. Это явление получило название эффект бабочки. И действительно, представим, что маленькая бабочка сидит на ветке дерева в далекой Амазонии и время от времени раскрывает и закрывает крылья. Допустим, что она взмахнула крыльями ровно два раза. Так как атмосфера — это хаотическая система, чувствительная к начальным условиям, малейшее отклонение потоков воздуха рядом с бабочкой может в конечном итоге вызвать ураган над Техасом спустя несколько месяцев.

Этот феномен стал широко известен в 1972 году, когда на заседании Американской ассоциации содействия развитию науки Лоренц выступил с докладом на тему «Может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе?», хотя еще в 1963 году один метеоролог так прокомментировал результаты исследования Лоренца: «Если эта теория верна, то взмах крыльев чайки может навсегда изменить погоду».

Популярная метафора о взмахе крыльев бабочки стала известной благодаря Лоренцу, а выражение «чувствительность к начальным условиям» ввел американский математик Гукенхеймер уже в 1970-е. В любом случае результат один: в силу хаотической динамики изначально совпадающие траектории постепенно отделяются друг от друга и расходятся.

Подобно спискам чисел, графики, приведенные Лоренцем в статье, изображали ряд колебаний, которые возрастали и в конечном итоге становились хаотическими.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление"

Книги похожие на "Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Карлос Мадрид

Карлос Мадрид - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Карлос Мадрид - Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление"

Отзывы читателей о книге "Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.