» » » » Владимир Вакула - Биотехнология: что это такое?


Авторские права

Владимир Вакула - Биотехнология: что это такое?

Здесь можно скачать бесплатно "Владимир Вакула - Биотехнология: что это такое?" в формате fb2, epub, txt, doc, pdf. Жанр: Биология. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Владимир Вакула - Биотехнология: что это такое?
Рейтинг:
Название:
Биотехнология: что это такое?
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Биотехнология: что это такое?"

Описание и краткое содержание "Биотехнология: что это такое?" читать бесплатно онлайн.



Рассказывается о новом научно-практическом мировоззрении, способствующем решению глобальных проблем наших дней: продовольственной, энергетической, охраны здоровья человека. Читатель познакомится как с традиционной биотехнологией (хлебопечение, производство кисломолочных продуктов, виноделие и др.), так и с новейшей, связанной с геннетической, клеточной, белковой инженерией.






И все — запуск механизма наработки сразу нескольких защитных белков, из которых, кстати, идентифицированы пока немногие, произведен. Мы и о функциях известных белков, кстати, тоже знаем далеко не все. А о многих процессах, осуществляемых с их помощью, можем только догадываться. Ну, например: каким именно образом помогают они клетке обрести стойкость, как противостоят вирусу, блокируя его размножение и выход из клетки образовавшихся вирусных частиц?

Одним словом, вопросов у этой проблемы больше, чем ответов. Но почему в таком случае производство человеческого интерферона и его использование в медицинской практике год от года расширяются?

Потому что вред от применения препарата внутренней, клеточной природы практически исключен, а польза ожидается большая, даже в случаях применения неочищенного интерферона, как это было в первые годы после его открытия. К тому же, здравоохранение всех стран интересуют не только противовирусные достоинства интерферона, но и его способность стимулирования биологических процессов клетки.

Вот почему с тех пор, как стало ясно, что интерферон способен подавлять пролиферацию (неограниченный рост) клеток, активизировать иммунную систему, в частности, лимфоциты (клетки-убийцы), неуклонное наращивание его производства было предрешено. А те «болезни», что наличествовали на первых этапах промышленного выпуска интерферона, были сродни тем, которыми «переваливают» в период становления и завоевания рынка сбыта все препараты организменного происхождения: интерферон оказался дорог и недостаточно чист.

По сути дела, полупромышленные установки по его производству выпускали не интерферон, а смесь нескольких белков, в составе которой на его долю приходилось менее одного процента. Но были клиники, были больные, и было известно, что, по данным многих исследователей, интерферон способен подавлять рост раковых опухолей. И потому все его «недостатки» гасились предполагаемыми возможностями, связанными с реализацией этих качеств препарата в практической медицине.

О том, как бурно развивалось производство интерферона и сколь решительно отвоевывал он себе место «под солнцем», можно судить, сопоставив всего лишь два таких факта: первая полупромышленная установка по выпуску интерферона начала работать еще в 1960 году, а в 1980 в Хьюстоне (США, Техас) был учрежден так называемый Фонд интерферона. Огромные средства, пожертвованные в него всемирно известными биотехнологическими компаниями и частными лицами, жизненно заинтересованными в увеличении объемов выпуска и совершенствовании препарата, создали возможность для осуществления работ по совершенствованию интерферона.

В рамках комплексной целевой программы «Биотехнология» к синтезу интерферона методами генетической инженерии вскоре приступили и в нашей стране. Руководил исследованиями академик Ю. А. Овчинников. Как именно начинался советский интерферон, рассказывает член-корреспондент АН СССР Е. Д. Свердлов. «Боюсь, что я вряд ли твердо знал, что такое интерферон, когда наш директор Юрий Анатольевич Овчинников в середине 1980 года вызвал меня и сказал: «Женя, надо сделать интерферон человека генной инженерией. Это очень серьезная проблема». Но как?

В общем виде я представлял себе, что надо делать. Прежде всего требуется получить ген, кодирующий интерферон. Для этого надо взять клетки человека, выделить из них информационные РНК (иРНК), получить с помощью фермента обратной транскриптазы комплементарные этим иРНК молекулы ДНК (кДНК), соединить кДНК с молекулами ДНК-векторов и ввести полученные рекомбинантные ДНК в бактериальные клетки. Далее, те бактериальные клетки, в которые проникли рекомбинантные ДНК, можно поместить на твердую питательную среду. Клетки начнут размножаться, каждая даст потомство, и в том месте, куда она попала вначале, вырастет нечто, очень напоминающее шляпку гриба масленка. Одна шляпка состоит из миллионов совершенно одинаковых бактерий — потомков исходной прапрапра-родительницы. Это потомство называют клоном, саму операцию такого размножения клеток — клонированием, а сумма всех клонов, в которую входят почти все кДНК, соответствующие множеству разных иРНК, синтезируемых клеткой, носит название библиотеки кДНК. В каждом клоне представлен только один тип кДНК. И вот в этой библиотеке нужно будет найти именно те клоны, где содержится запись об интерфероне. Их должно быть очень мало, так как среди множества информационных РНК в клетке на долю иРНК интерферонов приходится, наверное, десятые, а то и сотые доли процента».

Одним словом, работа предстояла гигантская, и в первую очередь необходимо было найти подходящие бактерии и проанализировать невероятно большое количество бактериальных КЛОЕОВ. Делается это с помощью метода гибридизации клонов со специально синтезированными олигонуклеотидами, комплементарными иРНК интерферона. Затем из бактерий, выбранных для гибридизации, извлекают рекомбинантные плазмиды и расщепляют их с помощью специальных ферментов — эндонуклеаз рестрикции.

Именно так были получены штаммы, содержащие гены интерферона, потом эти гены извлекли, а их последовательность проанализировали. И только один из всех отобранных генов был использован при создании штамма-продуцента.

Но чтобы такой ген начал функционировать в бактерии, как до того он работал в организме, его нужно было перестроить in vitro, потому что бактерии не умеют превращать белок-предшественник, который кодирует ген, в зрелый белок. Вот почему и понадобилось «обучить» ген кодированию полноценного белка, минуя промежуточную стадию.

Так был создан у нас в стране генноинженерный интерферон, заменивший собой препарат, изготовляемый прежде только из донорской крови. Он дешев, надежен и общедоступен — и по цене, и по наличию в аптеках. Это тоже одно из достоинств нового препарата, само появление которого в клинической практике стало своеобразным памятником столь рано ушедшему из жизни Ю. А. Овчинникову, считавшему, что возможности биотехнологии безграничны. «Нам надо держать высокие темпы, — не раз повторял ученый, — ибо здесь легко отстать».

Та же мысль красной нитью проходит через все статьи и публичные выступления другого выдающегося советского ученого, иммунолога с мировым именем Р. В. Петрова, сочетающего в себе талант исследователя с даром организатора. Сейчас иммунология, говорит он, раздвинула свои границы. И, значит, без лидера не обойтись. Надо уметь концентрировать силы и разумно использовать их для достижения цели. А в качестве примера такой высокоэффективной работы ученый называет советские исследования в области медиаторных молекул. «Мы, — говорит академик, — в Советском Союзе к этой работе подключились с задержкой и тем не менее, сконцентрировав силы, сумели впервые в мире обнаружить и исследовать пептидные медиаторы костного мозга — миелопептиды. Более того, удалось создать на их основе лечебный препарат миелопид... По инерции у нас нередко называют приоритетным такое направление, где мы отстали и надо срочно догонять. Но, ставя перед собой задачу только бы догнать, так и будешь плестись сзади. Приоритетные направления там, где мы вышли вперед или имеем шансы вот-вот сделать это. Вспомним хотя бы исследования раковых антигенов, начатые академиком Зильбером и продолженные профессорами Абелевым и Татариновым.

Другой, более близкий мне пример — искусственные антигены, синтетические вакцины. Не все участки природного антигена равноценны, лишь некоторые из них активны, они и определяют иммунный ответ. Чтобы организм отреагировал на возбудителя той или иной инфекции, достаточно одного-двух пептидов. А современные вакцины — это смесь, где есть и нужное, но еще больше ненужного. И вот, оказывается, можно с тем же и даже с большим успехом вводить заранее изолированное действующее начало. Или даже синтезированное. Мы сделали и следующий шаг, присоединив активный участок к полимеру, превратив его тем самым в работающую молекулу. Так удалось превратить слабые антигены в сильные, приучить к выработке антител те организмы, которые генетически к этому не способны».

«Новое — каждый день» — не такой ли девиз избрала биотехнология символом своего развития? Но сколь ни обширен и разнообразен характер поступающих сообщений о достигнутых ею успехах, проследить основные показатели опережающего по сравнению с другими направлениями научно-технического прогресса, развития все же можно. Их определяет в первую очередь острая потребность развивающейся отрасли в квалифицированных специалистах. Так, к 1990 году в биотехнологическую промышленность США придет не менее чем пятитысячное пополнение инженеров; появятся вакансии для специалистов, работающих по проблемам технологии обработки промышленных стоков, химических методов очистки продуктов биотехнологии, упаковочных систем, контрольно-измерительных приборов. А на проектирование и строительство специализированных предприятий в ближайшие десять лет США затратит до 6 миллиардов долларов.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Биотехнология: что это такое?"

Книги похожие на "Биотехнология: что это такое?" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Владимир Вакула

Владимир Вакула - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Владимир Вакула - Биотехнология: что это такое?"

Отзывы читателей о книге "Биотехнология: что это такое?", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.