» » » » Слава Кан - Океан и атмосфера


Авторские права

Слава Кан - Океан и атмосфера

Здесь можно скачать бесплатно "Слава Кан - Океан и атмосфера" в формате fb2, epub, txt, doc, pdf. Жанр: Научпоп, издательство Наука, год 1982. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Слава Кан - Океан и атмосфера
Рейтинг:
Название:
Океан и атмосфера
Автор:
Издательство:
Наука
Жанр:
Год:
1982
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Океан и атмосфера"

Описание и краткое содержание "Океан и атмосфера" читать бесплатно онлайн.



Океан, занимающий две трети нашей планеты, и атмосфера, окутывающая ее, играют огромную роль в жизни человечества. Составляя вместе оболочку Земли, они функционируют как единая механическая и термодинамическая система. Совместное изучение этих сфер и их взаимодействия — основное направление современной мировой гидрометеорологической науки. Этим вопросам посвящена и предлагаемая вниманию читателя книга. В пей показано также, что знание процессов, которые происходят в океане и атмосфере, имеет большое практическое значение, и в первую очередь для мореплавания, эксплуатации ресурсов океана, для морских и метеорологических прогнозов.

Для читателей, интересующихся проблемами окружающей среды.






Суточный ход прямой радиации связан также с географической широтой места — в низких широтах максимум выражен значительно отчетливее, чем в высоких. Это объясняется тем, что ближе к полюсам высота Солнца в течение дня меняется меньше. На самих же полюсах по этой причине суточного хода прямой радиации не существует. Амплитуда годового хода прямой радиации отчетливо выражена на полюсах, а на экваторе она наименьшая. В средних широтах максимум приходится на весенние месяцы (апрель и май), минимум годового хода полуденной радиации — на декабрь.

Если руководствоваться одним только положением высоты Солнца, то максимумы и минимумы должны были бы здесь приходиться на момент летнего и зимнего солнцестояния. Фактический сдвиг максимума к весне объясняется увеличением в воздухе пыли и водяного пара, из-за чего заметно уменьшается прозрачность атмосферы.

Во многих случаях практической деятельности человека важно иметь представление о суммах прямой радиации, получаемых Землей за различные интервалы времени. Эту сумму принято подразделять на три вида: теоретическую, возможную и действительную. К первому виду относится количество солнечной радиации, приходящей за определенный промежуток времени на 1 см2 поверхности. Возможной суммой называют количество лучистой энергии, которая поступила бы на единичную горизонтальную площадку поверхности Земли в данном месте при средней прозрачности атмосферы и отсутствии облачности.

Фактическое количество прямой радиации, приходящей на 1 см2 земной поверхности за определенное время, есть действительная сумма прямой радиации, которую получают путем обработки записей соответствующего прибора, т. е. в основе здесь лежит непосредственное наблюдение. Действительная сумма характеризует режим облачности данного пункта.

Значения сумм прямой радиации трех перечисленных видов сильно разнятся между собой в одном и том же пункте в различное время года, заметно уменьшаясь от одного вида к другому. Последнее происходит потому, что атмосфера играет очень большую роль в ослаблении солнечной радиации. Известно, что даже в ясные дни на Землю попадают только 60 % солнечной энергии, приходящейся на верхнюю границу атмосферы. Действительные суммы прямой радиации незначительно увеличиваются весной и летом от высоких широт к низким. Исключение составляют заполярные широты, где суммы заметно уменьшаются.

Осенью и зимой суммы значительно убывают с увеличением широты, что сказывается и на сильном уменьшении сумм за год. Сумма прямой и рассеянной радиации представляет собой суммарную радиацию, причем соотношение той и другой зависит от высоты Солнца, прозрачности атмосферы и облачности. До восхода Солнца и при малой его высоте полностью или преимущественно царит рассеянная радиация. Чем выше поднимается Солнце над небосклоном, тем меньше доля рассеянной радиации — при безоблачном небе она падает до 5—10 %. В прозрачной атмосфере также заметно убывает доля рассеянной радиации. Количество, высота и форма облаков в разной степени влияют на долю рассеянной радиации в общей суммарной. Когда Солнце плотно закрыто облаками, вся сумма радиации состоит только из рассеянной. В целом суммарная радиация в суточном и годовом аспекте зависит главным образом от высоты Солнца — пропорциональна ей. Существенна также географическая широта места — годовые суммы увеличиваются с уменьшением широты. В отдельные месяцы этот ход нарушается, и в полярных районах суммарная радиация может быть большей, чем в более низких широтах. Например, в бухте Тихой в июне суммарная радиация на 37 % больше, чем в Павловске, и на 5 % больше, чем в Феодосии.

В Антарктиде, по данным последних лет, суммарная радиация в декабре (самое теплое время) равна соответствующим суммам в Крыму и Ташкенте. Оказалось, что в среднем за год величины суммарной радиации в Антарктиде выше, чем в Ленинграде. Это объясняется особыми условиями Антарктиды — сухостью воздуха, значительной высотой над уровнем моря (поглощение в атмосфере соответственно меньше) и большой отражательной способностью снежной поверхности, равной 70–90 %, благодаря чему увеличивается рассеянная радиация. Значительную часть приходящего от Солнца тепла Антарктида теряет.

Часть радиации поглощается, а часть отражается. Соотношение этих частей меняется в течение суток, так как одна и та же поверхность отражает неодинаково, в зависимости от высоты Солнца. При преобладании в сумме радиации рассеянной (т. е. при малой высоте Солнца утром и вечером) шероховатая поверхность отражает сильнее, чем гладкая. Попадая на водную поверхность, солнечные лучи проникают в глубь прозрачных вод, рассеиваются в них больше, чем в почве, и, следовательно, отражаются меньше. Небольшая часть света, рассеянного внутри верхнего слоя воды, распространяется вновь вверх и складывается с отраженным от поверхности потоком. В частности, от этого зависит голубой цвет моря. Имеет значение и мутность самих вод.

Особенно велика отражательная способность облаков — в среднем около 80 %. В последние годы наблюдения над отражением солнечной радиации на больших участках Земли и от облаков ведутся с искусственных спутников. Зная отражение радиации от облаков, можно определить их вертикальную мощность, а над океанами рассчитать высоту волн. Различное отражение от поверхности облаков морей, лесов, степей и т. д. позволяет судить о естественных ресурсах Земли.

Поверхность Земли (почва, вода, снег, растительность и т. д.), которую не совсем точно называют деятельной поверхностью, излучает энергию в окружающее пространство.

Для всего земного шара в среднем за год, как показывают наблюдения, температура деятельной поверхности равна примерно 15 °C.

В метеорологии земное излучение принято считать длинноволновым, так как наибольшая энергия в этом излучении примерно в 20 раз длиннее волны, несущей наибольшую энергию в спектре солнечной радиации. Наибольшая излучательная способность — у снега, благодаря его рыхлой структуре. Атмосфера излучает невидимую инфракрасную радиацию.

Существенно также влияние ледяного покрова. Так, большие колебания площади ледяного покрова в Арктике в 1971–1973 гг. вызвали заметные изменения температуры воздуха в тропосфере. Наблюдения со спутников в последние годы показали, что облачность обширной тропической зоны (преимущественно над океанами) относительно невелика по сравнению с прежними наблюдениями, произведенными на континентах и в океане. Это дало возможность подсчитать, что отражение Землей тепла по сравнению с его приходом в целом невелико — меньше, чем полагали прежде, — и составляет около 30 %.

Широтные различия и большая отражательная способность Антарктиды усиливает различия в температурах тропических и полярных областей и как следствие этого циркуляцию атмосферы.

Около 40 % тепла уходит вверх в мировое пространство (так называемое уходящее излучение), а остальная часть направлена к Земле (встречное излучение). Таким образом, потери тепла на излучение в какой-то мере компенсируются поглощением части встречного излучения.

Излучение деятельной поверхности связано с ее температурой и влажностью воздуха. Чем выше температура поверхности, тем излучение больше; чем больше влажность воздуха, тем эффективное излучение меньше.

Сильно влияет на излучение и облачность: чем больше количество и плотность облаков, тем излучение меньше. Водяной пар (и отчасти углекислый газ и озон) в атмосфере также сильно задерживают излучение. Это относится к длинноволновой радиации, в то время как атмосфера довольно свободно пропускает коротковолновую солнечную радиацию. Таким образом, атмосфера превращается как бы в оранжерею — солнечные лучи проходят в глубь через это «стекло», а длинноволновое излучение назад не выходит. Не будь атмосферы, на Земле было бы очень холодно — не 15° (в среднем) как есть в действительности, а —23°.

В заключение следует отметить, что процесс отражения солнечной радиации имеет очень сложную природу. В поверхностном слое моря (в толще 10–50 м) теплообмен зависит от турбулентности и, в меньшей степени, от теплопроводности воды.

В процессах взаимодействия океана и атмосферы особенно велика роль ледяного покрова, изменяющего радиацию и другие явления, особенно в полярных областях планеты. При образовании и таянии льда затрачивается большое количество тепла, лед препятствует образованию волн, брызг и т. д. Лед в море пресный и, следовательно, сравнительно легкий. Тепло океана, однако, просачивается и сквозь лед, даже очень мощный, и обогревает Арктический бассейн. Лед покрывает зимой не только Арктику, но отчасти и другие моря.

Нагревание почвы солнечными лучами зависит от географической широты места, сезона и др. Почва поглощает тепло и нагревается летом, отдает тепло и охлаждается зимой. Аналогичный теплооборот, но в меньшем масштабе, происходит днем и ночью. Для атмосферных явлений, в том числе для климата, температура поверхности почвы (так же, как и океанов) очень важна, ибо зависит от нагревания подстилающей поверхности.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Океан и атмосфера"

Книги похожие на "Океан и атмосфера" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Слава Кан

Слава Кан - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Слава Кан - Океан и атмосфера"

Отзывы читателей о книге "Океан и атмосфера", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.