» » » » Валерий Чолаков - Нобелевские премии. Ученые и открытия


Авторские права

Валерий Чолаков - Нобелевские премии. Ученые и открытия

Здесь можно скачать бесплатно "Валерий Чолаков - Нобелевские премии. Ученые и открытия" в формате fb2, epub, txt, doc, pdf. Жанр: Научпоп, издательство Мир, год 1987. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Валерий Чолаков - Нобелевские премии. Ученые и открытия
Рейтинг:
Название:
Нобелевские премии. Ученые и открытия
Издательство:
Мир
Жанр:
Год:
1987
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Нобелевские премии. Ученые и открытия"

Описание и краткое содержание "Нобелевские премии. Ученые и открытия" читать бесплатно онлайн.



Книга болгарского историка науки Валерия Чолакова рассказывает о выдающихся открытиях в естествознании (физике, химии, биологии, медицине), авторы которых были удостоены Нобелевской премии. Учрежденная в начале нынешнего века, эта премия откосится к числу самых почетных и авторитетных международных наград, и ее присуждение, безусловно, отмечает значительные вехи в истории мировой науки нашего столетия.

Адресована широкому кругу читателей, интересующихся историей науки и ее достижениями.






И только более чем через 10 лет после этого возникла новая наука — стереохимия. Одним из ее основателей был Якоб Вант-Гофф. В 1874—1875 гг., в возрасте всего лишь 22 лет, он написал свою замечательную книгу «Химия в пространстве», где развил теорию пространственного размещения атомов в молекулах органических веществ (стереохимическая гипотеза). В то время ученый преподавал в ветеринарном училище, и некоторые его коллеги язвили, что не иначе как какой-нибудь «пегас» из конюшни училища подтолкнул его необузданную фантазию.

Стереохимическая гипотеза быстро прижилась в органической химии, и благодаря ей в XX в. были достигнуты большие успехи в описании структуры сложных органических веществ и биомолекул. Значительно медленнее эти представления проникали в неорганическую химию. Развитие этого процесса связано с именем швейцарского химика Альфреда Вер мера. По своему значёнию его деятельность сравнима с работами Вант-Гоффа. Вернер не только побудил многих химиков заняться изучением структуры молекул неорганических соединений, но и создал так называемую координационную теорию комплексных соединений.

Выделение комплексных соединений в самостоятельную группу в известной мере условно, поскольку нельзя провести четкую грань между комплексными и обычными соединениями. В «комплексах» вокруг центрального атома группируются атомы, радикалы и даже целые молекулы в количестве большем, нежели можно предположить, исходя из валентности атома. Вернер объяснил это явление, предположив, что наряду с основными валентностями, которые он назвал первичными, существуют и так называемые дополнительные, или вторичные, валентности. Сегодня это хорошо объясняется с позиций представлений об электронных конфигурациях центрального атома.

Идеи Альфреда Вернера постепенно распространились в неорганическую химию и даже проникли в органическую. Своими исследованиями пространственной структуры молекул он углубил представления о химической связи. В 1913 г. за большие заслуги в развитии химической науки Альфред Вернер был удостоен Нобелевской премии по химии.

Работы Макса фон Лауэ, Уильяма Генри Брэгга, Уильяма Лоренса Брэгга и других ученых позволили создать мощный метод исследования структуры молекул с помощью рентгеновского излучения. Крупный вклад в эти исследования внес Петер Йозеф Дебай.

В 1916 г. совместно с Паулем Шеррером Дебай разработал метод исследования структуры вещества с помощью дифракции рентгеновских лучей. В отличие от предыдущих методов метод Дебая — Шеррера позволял исследовать вещества в порошкообразном состояний, т. е. в виде очень мелких кристаллов. В том же году Дебай вместе с Арнольдом Зоммерфельдом применил квантово-механические представления для объяснения эффекта Зеемана (расщепления спектральных линий в магнитном поле) и ввел магнитное квантовое число.

Успехи в исследовании магнетизма побудили Дебая заняться изучением магнитных дипольных моментов молекул. Состоящие из различных атомов, молекулы имеют несимметричные электронные оболочки, в силу чего (как целое) они электрически заряжены и подобны маленьким магнитикам. Например, в молекуле воды более крупный атом кислорода притягивает к себе электроны, в то время как у атома водорода накапливается положительный заряд. Именно это приводит к возникновению у молекулы воды магнитного дипольного момента.

Наряду с методом рентгеновской дифракции Петер Дебай стал широко применять для исследования структуры химических соединений электронные пучки. Это произошло после того, как было установлено, что элементарные частицы обладают также и волновыми свойствами, т. е. могут порождать такие «оптические» явления, как интерференция и дифракция. Метод электронной дифракции — один из самых мощных инструментов исследования в современной химии.

За большие заслуги и разносторонний вклад в исследование молекулярных структур с помощью магнитных дипольных моментов молекул и дифракции рентгеновских лучей и электронов Петер Дебай был удостоен в 1936 г. Нобелевской премии по химии.

Сорок лет спустя он получил вторую Нобелевскую премию по химии за исследование названными выше методами химических связей и структур. Одновременно с ним американский химик Уильям Нанн Липскомб был награжден за работы по изучению молекулярных структур и реакций, осуществленные в основном методом рентгеноструктурного анализа.

Он применил этот метод при низких температурах и исследовал простые кристаллы кислорода, азота, фтора и ряда других веществ, которые переходят в твердое состояние только при сильном охлаждении. Опираясь на полученные результаты, Липскомб приступил к изучению более сложных молекул. Его внимание привлекали гидриды бора — бороводороды (соединения этого элементах водородом), которые считаются наиболее перспективным видом ракетного топлива. Исследование электронной структуры бороводородов позволило детально объяснить их свойства.

Постепенно Липскомб подошел к исследованиям биомолекул и сложным проблемам ферментативного катализа. По своему строению молекулы живой ткани неизмеримо сложнее молекул других веществ, изучаемых химией; это обусловлено прежде всего тем, что структура таких молекул должна обеспечивать оптимальные условия для протекания сложнейших реакций, которые осуществляются в живом организме. Исследование строения таких биомолекул, как гормоны, ферменты и нуклеиновые кислоты, принесло Нобелевскую премию не одному ученому. Липскомб был удостоен ее в 1976 г.

В середине прошлого века немецкий химик-органик Фридрих Август Кекуле разработал свою теорию строения органических соединений, введя понятие конституции молекул, т. е. их состава. Вскоре Вант-Гофф и Жозеф Ле Бель занялись изучением конфигурации молекул (т. е. пространственного строения молекул). А примерно через 70 лет в стереохимию был внесен не менее значительный вклад: в 1947 г. норвежский химик Одд Хассель создал теорию конформации органических молекул.

Еще в 30-е годы он предпринял исследования структуры циклогексана методом рентгеновской и электронной дифракции. Молекула циклогексана представляет собой кольцо из шести атомов углерода, которые прежде изображались структурными формулами в одной плоскости. Хассель показал, что это неправильное представление и что молекула циклогексана встречается в двух вариантах (конформациях): в форме лодки и в форме кресла. При комнатной температуре это соединение изменяет свою конформацию миллионы раз в секунду. Преобладает вариант «кресла»: в такой форме встречается 99% молекул. Исследования Хасселя показали, что органические молекулы являются довольно гибкими структурами. Углы валентностей сохраняются, но при этом происходит вращение различных групп атомов. Разумеется, это происходите известными ограничениями, которые также были рассмотрены Хасселем.

Идеи конформационного анализа развивал английский химик Дерек Харолд Ричард Бартон. В 1950 г. вышла его знаменитая работа по строению ядра стероидов, которую иногда сравнивают по значению с книгой Вант-Гоффа, посвященной стереохимии. Бартон приобрел широкую известность своими трудами по конформационному анализу, фотохимическим превращениям и биосинтезу физиологически активных соединений.

За большой научный вклад Одд Хассель и Дерек Бартон были удостоены в 1969 г. Нобелевской премии по химии. Эти ученые продолжали активно работать над своими идеями, оказавшими столь большое влияние на теоретическую и прикладную химию.

Трудно вообразить, что в наше время еще возможно открыть принципиально новый тип химической структуры и связи. Но именно это сделали в 1951 г. Эрнст Отто Фишер из Высшей технической школы в Мюнхене и Джефри Уилкинсон, английский ученый, работавший в Гарвардском университете. Оба они занимались так называемыми элементоорганическими соединениями. Одновременно их внимание привлекла и недавно синтезированная молекула, строение которой пока не удавалось объяснить.

Молекула синтезированного в 1950 г. ферроцена состояла из двух пятиатомных углеродных колец и одного атома железа. Все попытки объяснить связь между ними выглядели очень искусственно и вызывали сомнения. Фишер и Уилкинсон высказали предположение, что ферроцен имеет структуру «сандвича» — атом железа находится между углеродными кольцами. Связь различных частей молекулы осуществляется посредством взаимодействия между металлическим атомом и π-электронными конфигурациями из десяти атомов углерода, которое направлено перпендикулярно плоскости колец.

С таким типом химической связи и структуры ученые столкнулись впервые. В 50-е годы Фишер, Уилкинсон и некоторые другие исследователи, работавшие в промышленных лабораториях, синтезировали новые вещества группы так называемых металлоорганических соединений. Исследование их структуры методами. спектроскопии и ядерного магнитного резонанса подтвердило справедливость гипотезы Фишера и Уилкинсона.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Нобелевские премии. Ученые и открытия"

Книги похожие на "Нобелевские премии. Ученые и открытия" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Валерий Чолаков

Валерий Чолаков - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Валерий Чолаков - Нобелевские премии. Ученые и открытия"

Отзывы читателей о книге "Нобелевские премии. Ученые и открытия", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.