» » » » Валерий Чолаков - Нобелевские премии. Ученые и открытия


Авторские права

Валерий Чолаков - Нобелевские премии. Ученые и открытия

Здесь можно скачать бесплатно "Валерий Чолаков - Нобелевские премии. Ученые и открытия" в формате fb2, epub, txt, doc, pdf. Жанр: Научпоп, издательство Мир, год 1987. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Валерий Чолаков - Нобелевские премии. Ученые и открытия
Рейтинг:
Название:
Нобелевские премии. Ученые и открытия
Издательство:
Мир
Жанр:
Год:
1987
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Нобелевские премии. Ученые и открытия"

Описание и краткое содержание "Нобелевские премии. Ученые и открытия" читать бесплатно онлайн.



Книга болгарского историка науки Валерия Чолакова рассказывает о выдающихся открытиях в естествознании (физике, химии, биологии, медицине), авторы которых были удостоены Нобелевской премии. Учрежденная в начале нынешнего века, эта премия откосится к числу самых почетных и авторитетных международных наград, и ее присуждение, безусловно, отмечает значительные вехи в истории мировой науки нашего столетия.

Адресована широкому кругу читателей, интересующихся историей науки и ее достижениями.






Рудольф Мёссбауэр начал с самого главного: если причиной исчезновения резонанса является отскок атомных ядер, то нельзя ли найти какой-то способ «фиксировать» ядра? Ответ был гениально прост. Это возможно, если атом связан, в кристаллической решетке твердого тела и если кристалл охлажден до температуры, близкой к абсолютному нулю. В этом случае отскок атомного ядра при поглощении им гамма-кванта передается миллионам атомов, превращаясь в энергию колебаний кристаллической решетки. Сам Мёссбауэр приводил пример со стрельбой из винтовки. При выстреле происходит отскок, но если винтовка упирается в стену, то отскок ничтожен, так как масса стены во много раз превосходит массу винтовки. Все это легко сформулировать теоретически, однако успешная реализация идеи Мёссбауэра была осуществлена лишь в 1958 г., когда его диссертация уже «висела на волоске». В своем эксперименте Мёссбауэр использовал кристалл иридия, охлажденный жидким воздухом. Тогда-то и был открыт «ядерный гамма-резонанс без отдачи ядра». Вместо этой длинной фразы теперь просто говорят «эффект Мёссбауэра».

Особенно ярко эффект наблюдается, когда источник гамма-излучения медленно движется к мишени. Эффект Мёссбауэра дал в руки ученым исключительно чувствительный экспериментальный метод исследования, который нашел широкое применение в различных областях науки и техники. С его помощью исследуются продолжительность жизни изотопов, магнитные поля атомов и другие свойства твердых тел. Он открывает возможность и для непосредственной проверки теории относительности.

Когда Рудольф Мёссбауэр сделал свое открытие, ему было всего 29 лет. Три года спустя, в 1961 г., он (наряду с Робертом Хофстедтером) стал лауреатом Нобелевской премии по физике — за исследования резонансного поглощения гамма-квантов и открытие эффекта, носящего его имя.


VII. МАГНИТНЫЕ ЯВЛЕНИЯ

В истории физики важное место занимают исследования магнетизма. Это известное с древнейших времен явление стало объектом научных экспериментов еще в XVII в. За два последних столетия явление магнетизма было изучено достаточно полно и всесторонне, в частности, была выявлена связь магнетизма и электричества. Полученные данные и легли в основу созданной Максвеллом в 1865 г. теории электромагнитного поля.

Новый этап в исследовании магнитных явлений наступил после того, как в 1880 г. нидерландский физик Хендрик Антон Лоренц создал электронную теорию. На основе этой теории он объяснил целый ряд физических явлений и предсказал новые. В частности, он предсказал явление расщепления спектральных линий в сильном магнитном поле. И когда в 1896 г. нидерландский физик Питер Зееман открыл такой эффект (названный в дальнейшем его именем), это означало огромный успех теории Лоренца. Лоренц разработал и теорию этого эффекта. В 1902 г. Лоренц и Зееман были удостоены Нобелевской премии по физике.

Дальнейшее развитие теории магнетизма связано с именем французского физика Поля Ланжевена. В 1905 г. он, основываясь на представлениях электронной теории, разработал термодинамическую и статистическую теорию диа- и парамагнетизма. Эти два понятия были введены еще в 1845 г. Майклом Фарадеем. Говоря кратко, диамагнетизм — это свойство вещества намагничиваться во внешнем магнитном поле в направлении, противоположном направлению поля, а парамагнетизм — свойство вещества намагничиваться в направлении поля. Теория Ланжевена связывала диамагнетизм с особенностями движения электронов по орбитам вокруг ядра, а парамагнетизм — с ориентацией собстственных магнитных моментов атомов и молекул. Впоследствии оказалось, что источником магнитного поля атома является не только движение электрона вокруг атомного ядра, но и спин электрона. В сущности, спин, который сначала связывали с вращением частицы вокруг собственной оси, был открыт при исследовании магнитных явлений, в частности эффекта Зеемана. Эксперименты указали и третий источник магнетизма — само ядро атома. Первые исследования магнетизма проводились с обладающими магнитными свойствами природными материалами. Еще с давних времен была известна железная руда под названием «магнитный железняк» (от которого, собственно, и происходит термин «магнетизм»), которая создает достаточно сильное магнитное поле. Вся совокупность этих свойств железа получила название «ферромагнетизм». Вначале считалось, что ферромагнетизм — просто одна из форм парамагнетизма. Позднее выяснилось, что механизм этих явлений различен. Среди первых попыток создать теорию ферромагнетизма особо следует отметить работы французского физика Пьера Эрнеста Вейса. В 1907 г. он высказал гипотезу о существовании в ферромагнетиках внутреннего магнитного поля и областей самопроизвольной намагниченности (участки Вейса). Магнитные моменты атомов в ферромагнетиках ориентированы параллельно, поэтому материал обнаруживает магнитные свойства и в отсутствие внешнего магнитного поля.

У французских физиков существуют богатые традиции исследований в области магнетизма. Одним из носителей этих традиций является Луи Эжен Феликс Неель. Как Пьер Вейс и Поль Ланжевен, он также избран членом Парижской академии наук. В 1930 г., работая в Страсбургском университете, Неель открыл явление антиферромагнетизма. Если в ферромагнетиках магнитные моменты атомов ориентированы в одном направлении, то в антиферромагнетиках они ориентированы навстречу друг другу (антипараллельно) и взаимно компенсируют друг друга, поэтому в отсутствие магнитного поля намагниченность тела в целом равна нулю.

В 1948 г. Неель, будучи уже профессором Гренобльского университета, занялся ферритами — одним из видов химических соединений окислов переходных металлов с окисью железа, обладающих специфической структурой и магнитными свойствами. Французский ученый дал объяснение сильному магнетизму ферритов, показав, что в их кристаллах атомные магнитные моменты ориентированы, как у. антиферромагнетиков, но по величине противоположно направленные магнитные моменты различны, и поэтому не происходит их взаимной компенсации.

Исходя из своей теории, Неель описал поведение новых синтетических магнитных материалов. За фундаментальные работы по магнетизму Луи Неель был удостоен в 1970 г. звания лауреата Нобелевской премии по физике, разделив эту награду с Ханнесом Альфвеном.

Одним из создателей современных представлений о магнетизме вещества является американский физик Джон Хансбрук Ван Флек. В период 1926—1928 гг., работая в Миннесотском университете, он разработал квантовомеханическую теорию диа- и парамагнетизма. Первоначально теория касалась только газов и неметаллических соединений, но впоследствии была распространена и на кристаллы. В 1932 г. Ван Флек опубликовал обширную монографию, посвященную проблемам магнетизма, которая приобрела широкую известность в научных кругах. В 30-е годы эта и другие работы Ван Флека сыграли большую роль в развитии квантовой теории химических связей. Пройдя долгий плодотворный путь и сохранив работоспособность до преклонного возраста, этот ученый стал лауреатом Нобелевской премии по физике лишь в 1977 г. — в возрасте 88 лет. Ван Флек получил это высокое признание за исследования магнетизма вещества, в частности за работы в области упорядоченных магнитных систем, каковыми являются кристаллы.

Вместе с Ван Флеком Нобелевской премии были удостоены Филип Андерсон, его ученик из Гарвардского университета, и английский физик Невилл Мотт. Андерсон известен своими работами по магнетизму и сверхпроводимости, а Мотт — множеством исследований в различных областях физики твердого тела, которые он проводил на протяжении почти четырех десятилетий. Однако эти два ученых, по существу, были награждены за исследования локализации электронных состояний в неупорядоченных системах, к которым относятся жидкие, аморфные и стекловидные вещества.

В современной науке неупорядоченные системы — одно из особенно бурно развивающихся и перспективных направлений исследования. С аморфными полупроводниками, например, связываются надежды на дальнейшее развитие микроэлектроники. Признанием заслуг в этой области исследований и явилось присуждение в 1977 г. Нобелевской премии Филипу Андерсону и Невиллу Мотту.

Важное место в исследовании магнетизма занимают эксперименты, связанные с измерением магнитных моментов атомов и элементарных частиц. В 1922 г. Отто Штерн и Вальтер Герлах из Франкфуртского университета поставили опыт, доказывающий наличие у атома магнитного момента. Они пропускали поток атомов серебра между полюсами магнита в вакуумной камере. Как и ожидалось, поток разделился на два и на экране образовались два серебряных пятнышка. Это подтвердило, что атомы можно рассматривать как миниатюрные магнитики с магнитной осью, с северным и южным магнитными полюсами, которые соответствующим образом ориентируются в пространстве относительно внешнего магнитного поля.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Нобелевские премии. Ученые и открытия"

Книги похожие на "Нобелевские премии. Ученые и открытия" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Валерий Чолаков

Валерий Чолаков - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Валерий Чолаков - Нобелевские премии. Ученые и открытия"

Отзывы читателей о книге "Нобелевские премии. Ученые и открытия", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.