» » » » Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики


Авторские права

Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Здесь можно скачать бесплатно "Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики" в формате fb2, epub, txt, doc, pdf. Жанр: Научпоп, издательство КоЛибри, год 2012. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
Рейтинг:
Название:
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
Издательство:
КоЛибри
Жанр:
Год:
2012
ISBN:
978-5-389-01770-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"

Описание и краткое содержание "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики" читать бесплатно онлайн.



Алекс Беллос, известный журналист, многие годы работавший для «Guardian», написал замечательную книгу о математике. Книга эта для всех — и для тех, кто любит математику, и для тех, кто считает ее невероятно скучной и далекой от жизни. Беллосу удалось создать настоящий интеллектуальный коктейль, где есть и история, и философия, и религия, и конечно же математика — чудесные задачки, которые пока не решишь, не заснешь!






Головоломки — это, кроме того, чудесный способ сделать математику более привлекательной. Решение их нередко требует нестандартного мышления или опирается на факты, на первый взгляд противоречащие интуиции. Ощущение достигнутого успеха, испытываемое при решении головоломок, — удовольствие, которое хочется переживать вновь и вновь; когда же задачка не решается, от тоски просто лезешь на стенку. Чувство поражения почти непереносимо.

Издатели быстро осознали, что рынок математических забав огромен. В 1612 году во Франции вышла книга Клода Гаспара Баше «Занимательные и приятные задачи (очень полезные для всех любопытных людей, использующих арифметику)». Один из ее разделов был посвящен магическим квадратам, фокусам с картами, вопросам, относящимся к системам счисления с основанием, отличным от десяти, а также задачкам из серии «задумай число». Баше был серьезным исследователем, он перевел Диофантову «Арифметику» с греческого на латынь и снабдил текст своими комментариями. Однако его популярная книга по математике оказалась, пожалуй, гораздо более заметной, чем его научные труды. Она сохраняла свою актуальность в течение столетий, а сравнительно недавно — в 1959 году — выдержала еще одно издание. Мы уже говорили, что определяющая черта математики — пусть даже развлекательной — состоит в том, что она никогда не устаревает.

В середине XIX века американские газеты начали печатать шахматные задачи. Одним из первых, и к тому же самым молодым из изобретателей таких задач был ньюйоркец Сэм Лойд. В возрасте всего 14 лет опубликовал свою первую задачку в местной газете. В 17 лет он был уже одним из наиболее успешных и известных изобретателей шахматных задач в Соединенных Штатах. От шахмат Лойд перешел к математическим головоломкам и к концу столетия стал первым в мире профессиональным составителем головоломок и импресарио. Он часто публиковался в американских изданиях и утверждал, что получал от читателей до 100 000 писем в день. Эту цифру, впрочем, следует воспринимать с известной долей скептицизма. Лойд призывал людей относиться к истине как к некой забавной игре — что можно ждать от профессионального загадочника! Для начала Ллойд заявил, что именно он изобрел игру в пятнашки, и ему поверили! И только в 2006 году, когда историки Джерри Слонам и Дик Соннвелд проследили происхождение этой игры, выяснилось, что на самом деле ее придумал Ной Чепмэн. Лойд также возродил интерес к танграмам, опубликовав «Восьмую книгу о тан, Часть I», якобы являвшуюся вариантом древнего текста, посвященного 4000-летней истории этой головоломки. Книга оказалась мистификацией, хотя сначала ее всерьез восприняли даже ученые.

Лойд обладал феноменальной способностью к превращению математических задач в забавные, ярко иллюстрированные головоломки. Самой гениальной из них была головоломка, изобретенная Лойдом в 1896 году для газеты «Brooklyn Daily Eagle». Эта головоломка, называвшаяся «Таинственное исчезновение с Земли», приобрела такую популярность, что позднее ее идеей воспользовались в качестве рекламных приемов несколько известных брендов, таких как «The Young Ladies Ноше Journal» и «Большая Атлантическая & Тихоокеанская чайная компания»; кроме того, ее использовали республиканцы для своей политической программы на президентских выборах 1896 года (хотя содержащееся в ней послание вовсе не походило на политический манифест). На этой головоломке изображены китайские воины, расположенные вокруг Земли, нарисованной на картонном круге, который может вращаться вокруг своего центра[43]. Когда нарисованная на круге стрелка указывает на северо-восток, на картинке нарисовано 13 воинов, но стоит повернуть круг так, чтобы стрелка указывала на северо-запад, как один из них исчезает, и воинов остается только 12. Эта головоломка сбивает с толка. Только что перед вами было 13 воинов, а через секунду — уже только 12. Кто именно исчез и куда он делся?

Фокус, используемый в данной головоломке, известен как геометрическое исчезновение. Его можно продемонстрировать и так: на рисунке изображен лист бумаги с нанесенными на него десятью вертикальными отрезками. При разрезании листа по диагонали получаются два куска, которые можно сложить по-другому — так, что получится только девять отрезков. Куда делся десятый? А происходит следующее: отрезки сложились таким образом, что их получилось девять, но они оказались длиннее первоначальных. Если отрезки на первом рисунке имели длину 10 единиц, то на втором их длина равна 111/9, поскольку один из исходных отрезков распределился среди девяти остальных.

В своей головоломке «Таинственное исчезновение с Земли» Сэм Лойд использовал геометрическое исчезновение на окружности, а вместо отрезков — китайских воинов. В его головоломке имеется 13 позиций воинов, аналогично наличию 10 отрезков в разобранном выше примере. В левом нижнем углу исходно имеются два воина, что соответствует исходному положению крайних отрезков в фокусе с геометрическим исчезновением. Когда стрелка переводится с северо-востока на северо-запад, части воинов соединяются по-другому — ко всем, кроме двух, немножко «добавляется», а два крайних при этом радикально «ужимаются» — создается впечатление, что целый воин исчез. На самом деле он просто перераспределился среди остальных. Сэм Лойд заявлял, что произведено десять миллионов экземпляров «Таинственного исчезновения с Земли». Он стал богатым и знаменитым и наслаждался репутацией американского короля головоломок.

«Таинственное исчезновение с Земли»


Тем временем в Великобритании Генри Эрнест Дьюдени также приобретал аналогичную репутацию. Если капиталистическая нагловатость Лойда и его талант к саморекламе отражали оживленную атмосферу соперничества, царившую в Нью-Йорке на рубеже столетий, то Дьюдени был воплощением сдержанного английского стиля. Он происходил из фермерской семьи, занимавшейся разведением овец в Сассексе. Уже в 13-летнем возрасте он начал работать — клерком в одном из государственных учреждений в Лондоне. Однако эта работа ему быстро наскучила, и он принялся публиковать небольшие задачки и головоломки в различных изданиях. В конце концов он полностью посвятил себя журналистике[44]. Его жена Элис писала пользовавшиеся успехом романтические повести о деревенской жизни в Сассексе — где, благодаря ее авторским гонорарам, они с мужем могли жить в их поместье, ни в чем не нуждаясь. Супруги Дьюдени часто бывали и в Лондоне, вращались в высокообразованных литературных кругах, куда также входил сэр Артур Конан Дойл — создатель Шерлока Холмса, самого знаменитого разгадывателя головоломок во всей литературе.

В 1894 году Лойд опубликовал очередную шахматную задачу, которая решалась в 53 хода. Он был уверен, что никто никогда не найдет известное ему одному решение. Однако Дьюдени, который был на 17 лет младше Лойда, нашел решение в 50 ходов. После этого они некоторое время сотрудничали, но разругались, когда Дьюдени узнал, что Лойд не гнушается плагиатом. Дьюдени презирал Лойда столь глубоко, что сравнивал его с дьяволом.

И Лойд, и Дьюдени были самоучками, но Дьюдени обладал гораздо более ясным математическим складом ума. Многие из его головоломок затрагивают глубокие математические проблемы, причем нередко предвосхищая интерес к ним со стороны ученых. Например, в 1962 году математик Мейко Кван исследовал задачу о дороге, которую должен выбрать почтальон, чтобы пройти по каждой улице и притом кратчайшим путем. Дьюдени же почти на 50 лет ранее сформулировал — и решил — ту же задачу в виде головоломки об инспекторе шахт, которому надо пройти по всем подземным туннелям.

Особого искусства Дьюдени достиг в решении геометрических задач на разбиение, в которых фигура некоторой определенной формы разрезается на куски, после чего они собираются в фигуру другой формы, по тому же принципу, что и танграмы. Дьюдени нашел способ превращения квадрата в правильный пятиугольник путем разбиения его на шесть частей. Его метод стал популярной классикой, ведь ранее, в течение многих лет, считалось, что минимальное разбиение, превращающее квадрат в пятиугольник, требует семи частей.

Разбиение, превращающее квадрат в пятиугольник


Дьюдени также открыл новый способ разбиения правильного треугольника на четыре куска, из которых собирается квадрат. Более того, он придумал, что если эти четыре куска соединить шарнирами, то их можно складывать одним способом в треугольник, а другим — в квадрат. Он назвал получившуюся конструкцию «Головоломкой галантерейщика», потому что формы фигур выглядели как обрезки материи в лавке галантерейщика. Эта головоломка ввела в обиход идею «шарнирного разбиения» и вызвала такой интерес, что Дьюдени изготовил ее из красного дерева с медными шарнирами и в 1905 году выступил с докладом об этой задаче на заседании Королевского математического общества в Лондоне. «Головоломка галантерейщика», жемчужина наследия Дьюдени, до сих пор вызывает восторг математиков.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"

Книги похожие на "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Алекс Беллос

Алекс Беллос - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"

Отзывы читателей о книге "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.