» » » » Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики


Авторские права

Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Здесь можно скачать бесплатно "Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики" в формате fb2, epub, txt, doc, pdf. Жанр: Научпоп, издательство КоЛибри, год 2012. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
Рейтинг:
Название:
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
Издательство:
КоЛибри
Жанр:
Год:
2012
ISBN:
978-5-389-01770-2
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"

Описание и краткое содержание "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики" читать бесплатно онлайн.



Алекс Беллос, известный журналист, многие годы работавший для «Guardian», написал замечательную книгу о математике. Книга эта для всех — и для тех, кто любит математику, и для тех, кто считает ее невероятно скучной и далекой от жизни. Беллосу удалось создать настоящий интеллектуальный коктейль, где есть и история, и философия, и религия, и конечно же математика — чудесные задачки, которые пока не решишь, не заснешь!






Когда Акира Харагучи декламировал наизусть 100 000 цифр числа π, он использовал мнемонический прием, по которому каждому числу от 0 до 9 приписываются слоги, так что десятичная запись превращается в слова, в свою очередь образующие предложения. Первые пятнадцать цифр звучали так: «жена и дети уехали за границу, а муж не боится». В разных культурах по всему миру школьники используют слова, чтобы запомнить цифры числа π, но, как правило, это делается не с помощью перехода к слогам, а путем придумывания фразы, в которой число букв в каждом слове представляет последовательные цифры в десятичном разложении π. Подобная хорошо известная английская фраза приписывается астрофизику сэру Джеймсу Джинсу: «How I need a drink, alcoholic in nature, after the heavy lectures involving quantum mechanics. All of thy geometry, Herr Planck, is fairly hard». «How» состоит из трех букв, «I» — из одной, «need» — из четырех и т. д.[28].

Среди чисел только π породило фанов подобного рода. Никто не стремится запомнить квадратный корень из двух, что является в равной степени сложным. π остается также единственным числом, которое вдохновило создание своего собственного поджанра в литературе. Принудительный стиль — это техника, в которой принимается условие, предписывающее литературному произведению следовать определенной схеме или же, наоборот, запрещающее определенные вещи при написании текста. Были написаны целые поэмы — или «пиэмы», — где количество букв в словах определяется цифрами числа π, причем принято, что если в разложении встречается нуль, то это требует слова из десяти букв. Самая впечатляющая пиэма — это «Cadaeic Cadenza», которую написал Майк Кит, и она не отстает от числа π на протяжении 3835 цифр. Начинается она как стилизация под Эдгара Аллана По[29]:

One; А роет
A Raven
Midnights so dreary, tired and weary,
Silently pondering volumes extolling all by now obsolete lore.
During my rather long nap — the weirdest tap!
An ominous vibrating sound disturbing
my chamber’s antedoor.
«This», I whispered quietly, «I ignore».

Кит говорит, что написание длинного произведения при наличии сложных условий тренирует как дисциплину, так и творческие возможности. Поскольку цифры в π случайны, условие, как он выразился, «подобно созданию порядка из хаоса». Когда я спросил его: «Почему пи?» — он ответил, что число π было «метафорой для всех вещей бесконечных, или неисповедимых, или непредсказуемых, или полных нескончаемого чуда».

* * *

Число π обрело свое имя только начиная с 1706 года, когда валлиец Уильям Джонс ввел символ π в своей книге, озаглавленной так: «Новое введение в математику для использования некоторыми из друзей, у которых нет ни досуга, ни возможностей, ни, быть может, терпения, дабы вникать в труды столь большого числа различных авторов и переворачивать страницы столь многих нудных томов, что непременно требуется для достижения приемлемого прогресса в математике». Греческая буква, которая скорее всего явилась сокращением слова «периферия»[30], прижилась, однако, не мгновенно, и стала стандартным обозначением для числа π лишь спустя 30 лет, когда ее начал использовать Леонард Эйлер.

Эйлер был наиболее плодовитым математиком всех времен и народов (он опубликовал 886 книг!), и он же, возможно, внес наибольший вклад в понимание числа π. Именно его улучшенные формулы для π позволили охотникам за цифрами в XVIII и XIX столетиях докапываться до все более и более далеких десятичных разрядов. В начале XX века индийский математик Сриниваса Рамануджан изобрел много новых бесконечных рядов для числа π в духе рядов Эйлера.

Рамануджан был по сути математиком-самоучкой. Однажды он написал письмо профессору Кембриджского университета Г. X. Харди. Харди, ошеломленный тем, что Рамануджан сам переоткрыл результаты, получение которых заняло столетия, пригласил его в Англию, где они и работали вместе вплоть до смерти Рамануджана, в возрасте 32 лет. В своих работах Рамануджан продемонстрировал потрясающую интуицию в том, что касается свойств чисел, включая и число π, а его самая знаменитая формула такова:

Символ суммы указывает, что надо складывать целый ряд значений, начиная со значения при n равном нулю, далее прибавить значение при n равном единице, и т. д. до бесконечности. Но, даже не вникая в подробности обозначений, можно оценить, сколь эффектно работает подобное равенство. Формула Рамануджана стремится к π с замечательной скоростью. С самого начала, при n равном 0, формула дает значение числа π с точностью до шести десятичных разрядов. При каждом увеличении значения n формула добавляет к π примерно восемь новых цифр. Это поистине установка для производства числа π в промышленном масштабе.

В духе Рамануджана в 1980-х годах математики Грегори (Григорий) и Дэвид (Давид) Чудновски (урожденные украинцы) сконструировали даже еще более зверскую формулу. Каждый новый член в ней прибавляет примерно 15 цифр:

При своем первом знакомстве с формулой Чудновски я в буквальном смысле стоял на ней. Грегори и Дэвид — братья, и у них общий кабинет в Политехническом университете в Бруклине. В кабинете диван в углу, пара стульев и голубой пол, декорированный десятками формул для числа π. «Мы хотели чем-то украсить пол, а чем еще его можно украсить, как не какой-нибудь штуковиной, имеющей отношение к математике?» — объяснил Грегори.

На самом деле к украшению пола формулами для числа π они пришли со второй попытки. Исходный план состоял в том, чтобы использовать гигантскую репродукцию гравюры «Меланхолия» Альбрехта Дюрера. Математики обожают ее, поскольку она полна лукавых символов со ссылками на числа, геометрию и перспективу.

— Как-то ночью, когда на полу еще ничего не было, мы напечатали «Меланхолию» на двух тысячах листочков и разложили их на полу, — рассказывает Дэвид. — Но попробуй по этому походить — тебя сразу начнет мутить! Дело в том, что угол зрения изменяется слишком резко.

Тогда Дэвид принялся изучать, как устроены полы в соборах и замках Европы; ему хотелось, чтобы пол в офисе был красивым, но не вызывал приступов тошноты у тех, кто по нему ходит.

— И я обнаружил, что все полы по большей части оформлены…

— В простом геометрическом стиле, — перебивает его Грегори.

— Черное и белое, черные и белые квадраты, — продолжает Дэвид.

— Понимаешь, если у тебя на полу действительно сложная картинка, и ты пытаешься по ней ходить, то угол зрения меняется настолько резко, что глаза начинают протестовать, — добавляет Грегори. — Так что единственным способом сделать что-то подобное оказалось…

— Поместить ее на потолок! — восклицает мне в ухо Дэвид, и оба покатываются со смеху.

Когда разговариваешь с братьями Чудновски, кажется, что на тебе стереонаушники, через которые сигналы поступают в разные уши беспорядочно и с перебоями. Они усадили меня на диван, а сами расположились по обеим сторонам. Постоянно перебивая друг друга, подхватывая сказанные другим предложения, они изъяснялись при этом на очень мелодичном английском с большим количеством славянских интонаций. Оба брата родились в Киеве, когда он еще входил в Советскую Украину; в Соединенных Штатах они живут с конца 1970-х годов, братья — граждане этой страны. Вместе они написали так много статей и книг, что хотели бы, чтобы их воспринимали не как двух математиков, а как одного.

И тем не менее, несмотря на все свое генетическое, разговорное и профессиональное единство, братья выглядят очень по-разному. Главная причина этого в том, что Грегори, которому сейчас 56, страдает тяжелой формой миастении, — аутоиммунного заболевания мускулатуры. Он настолько худой и хрупкий, что большую часть своей жизни проводит лежа. Я ни разу не видел, чтобы он вставал с дивана. Однако энергия, которой недостает его телу, в полной мере проявляет себя в неподражаемых выражениях его лица, которое оживает всякий раз, как он заводит речь о математике. У него заостренные черты лица, большие карие глаза, седая борода и клочковатые нечесаные волосы. У Дэвида, который на пять лет его старше, голубые глаза, полноватая фигура и более круглое лицо. Он гладко выбрит, а на его коротко стриженных волосах красуется бейсбольная кепка оливково-зеленого цвета.

Судя по всему, братья Чудновски сделали для популяризации числа π больше всех других современных математиков. В начале 1990-х годов в квартире Грегори на Манхэттене они собрали суперкомпьютер из заказанных по почте деталей, и этот компьютер, используя их собственную формулу, вычислил число π до более чем двух миллиардов десятичных разрядов, что стало рекордом для того времени.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"

Книги похожие на "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Алекс Беллос

Алекс Беллос - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики"

Отзывы читателей о книге "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.