» » » » Юрченко Борисович - Философия и логика времени


Авторские права

Юрченко Борисович - Философия и логика времени

Здесь можно скачать бесплатно "Юрченко Борисович - Философия и логика времени" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая старинная литература, издательство SPecialiST RePack. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Юрченко Борисович - Философия и логика времени
Рейтинг:
Название:
Философия и логика времени
Издательство:
SPecialiST RePack
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Философия и логика времени"

Описание и краткое содержание "Философия и логика времени" читать бесплатно онлайн.








Это значит, что континуальный эфир лежит ниже границы математического анализа, на которой производится дифференцирование. В физическом смысле появление бесконечно малой величины равноценно появлению дискретного метрического пространства-времени. КМ говорит нам, что нижней границей этого пространства-времени является физический вакуум. Именно принцип неопределенности позволяет перейти от абсолютного покоя к движению, от нелокального мира к локальному. Благодаря этому принципу световая точка эфира становится точкой пространства-времени. В противном случае, как мы уже говорили, все в мире должно двигаться со скоростью света. Такая Вселенная не может существовать. Вакуум можно назвать буфером, который отделяет бытие от небытия.

Совершенно условно (а по-другому это, пожалуй, сделать нельзя) мы попробуем проиллюстрировать траекторию Ахиллеса в искаженном пространстве Минковского. Эта история становится историей другого мифического персонажа – Орфея, спускающегося в ад. В таком сюрреалистическом пространстве световой конус представлен сильно развернутым, чтобы как-то отделить его от физического пространства, хотя по сути они сливаются, делая подобными «застывшую» в мгновенном покое 3-мерную Вселенную и эфир, который мы представляем гиперплоскостью нулевой толщины. Ньютоновская модель была, можно сказать, инфантильной моделью эфира, в котором Вселенная логически невозможна. Она выстраивается над ним как класс страт M/t.

Рис.8

Также условно мы вынуждены выразить класс эквивалентностей ИСО/~, каждая из которых имеет собственную плотность времени с точностью до кванта времени и соответственно определенную энергию гравитационного поля, в котором метрический тензор не зависит от времени, образуя t-подобное поле Киллинга. Конечная подалгебра Ли этих полей должна распространяться и на плотности времени. Иначе говоря, класс ИСО/~ есть циклическая (коммутативная) группа плотностей, разложенных по степеням кванта времени с алгебраическим сложением по скоростям (ИСО) и групповым умножением по дифференциалам (плотности времени).

Геометрически этот класс составляет некий «бутон конусов» , каждый из которых состоит из мировых линий с квантовыми инерциальными метриками Бутон должен обладать странным свойством: , отражающим тот факт, что абсолютный покой в пространстве эквивалентен абсолютному покою во времени, поскольку в обоих случаях необходима скорость света, как это и подразумевается в преобразованиях Лоренца. Ахиллес, т.е. Орфей, в свободном падении при равномерном ускорении a = const приближаясь к границе конуса, приближается к нелокальному миру вечного настоящего. Сингулярность, в которую он попадает, ничем не отличается от сингулярности, лежащий в основании Вселенной.

Рекурсивная форма преобразований Лоренца, представленная выше формулой (4.4), подразумевает, что имеется восходящая через упорядоченное множество (квантовых) ИСО череда интервалов, которая начинается в эфире, релятивизуя его, по выражению Эйнштейна, в пространство-время. Математически инерциальные квантовые метрики соответствуют циклической группе дифференциалов , образующих класс канонических накрытий (покрытий) континуума , который сам является сингулярностью (эфиром):

В отличие от классического определения покрытия как объединения семейства множеств, включающего в себя данное множество, принятое здесь словоупотребление имеет иной смысл. В классе канонических покрытий, каждое из которых полностью покрывает континуум , данное множество является нижней границей:

Было бы желательным определить «точки» (дифференциалы ) так, чтобы имело место , когда каждая восходящая точка является «оболочкой» (замыканием) предыдущей, так что . Топология такого класса пространств определялась бы открытыми шарами с радиусом . Положим, что каждому покрытию и метрике в нем топологически соответствует своя дифференциальная мера , такая что есть классическая мера Лебега для дифференциала и , :

(4.7)

Если нормировать шар как единичную сферу, то можно говорить о касательных пространствах покрытия в точках с линейным элементом , в котором интерпретируется как элемент длины (вектор смещения) . Далее для кривой от параметра t задается функция , по которой определяется метрика [21]. В этом случае мера определяет «соприкасающуюся индикатрису», а условие (2.2) требует, чтобы сама точка была световой и наследственно сингулярной, поскольку для нелокального эфира мера любого интервала равна нулю, что соответствует мгновенным квантовым корреляциям в нем:

Поскольку ускоренное движение в пространстве-времени по его физическому смыслу есть прохождение тела через множество ИСО, то его геодезическая S в «бутоне» должна быть лестницей, т.е. степенным рядом Тейлора и складываться из суммы N таких инерциальных метрик:

(4.8)

Переход от одной инерциальной метрики к другой происходит за счет квантового «приращения ускорения», которое, как это следует из его геометрического смысла, является s-подобным, т.е. световым. Из Лагранжевой механики нам известно, что ускорение не имеет производной. Экстремальный вариационный принцип Гамильтона требует, чтобы действие всегда происходило выше сингулярной мера континуума, т.е. геодезическая S должна скользить по покрытию эфира с классической мерой , никогда не падая в него. Падение в приводит к нелокальности. Здесь можно вспомнить теорему о разложении меры , которая гласит, что любую меру Лебега – Стилтьеса можно представить в виде суммы трех мер — дискретной, абсолютно непрерывной и сингулярной. Для лагранжиана, являющегося в общем случае разностью кинетической и потенциальной энергии , вытекает из экстремального принципа в уравнении Эйлера-Лагранжа требование сохраняться во времени:

Это означает в данном случае, что сохранение энергии эквивалентно сохранению меры (однородности на покрытии). Все прочие законы сохранения требует дополнительных симметрий на покрытии. Минимум действия заключается в минимальности покрытия . Это же требование выражено в условии Якоби для семейства экстремалей. Упоминание этого связано с тем, что позже мы придем к разбиению метрики Лоренца на метрику гиперболоида в ортогональных координатах СТО и ОТО и унитарной сфере в полярных координатах КМ, которая замечательным образом свяжет условие экстремалей с якобианом.

Отсюда можно сделать сопутствующий вывод (к которому мы вернемся позже), а именно, что производная ускорения и есть скорость света. Действительно, геодезическая как топологическая лестница дифференциальных мер, представленная степенным рядом, должна выражаться через экспоненты кванта времени. При этом сдвиг от одной ИСО к другой через ускорение является, как видно на рис. 8, является s-подобным, т.е. световым. И тогда это сопровождается релятивистскими эффектами (вроде гравитационного красного сдвига) между двумя ИСО именно как результат перехода от меры одной ИСО к другой на той же самой геодезической S (как если мерить один предмет разными линейками). Иначе говоря, эти эффекты следует относить к топологическим покрытиям нелокального континуума, т.е. пустого множества. Но тогда и замедление часов есть ничто иное как эффект разных мер времени. Конечно, это делает условными сами единицы измерения – все, кроме сингулярных: нет никаких абсолютных секунд, метров и граммов, но есть абсолютные нули.

Итак, физически равноускоренная геодезическая S тождественна траектории тела в гравитационном поле, а ее математическое представление в каждом элементе длины рядом Тейлора из «инерциальных» канонических мер эквивалентно представлению этого процесса как причинной марковской цепи. По сути, речь здесь идет о преобразовании Фурье в самом широком смысле, как о трансформации континуального в дискретное, в частности, о совмещении Риманова пространства СТО и ОТО с нормированным Гильбертовым пространством КМ. Условие сингулярности (2.2) в пространстве Минковского можно выразить так:

(4.9)

Метрику Лоренца необходимо подвергнуть фильтрации в дискретно-неотделимом пространстве M/t, получив унитарную норму, т.е. нижнюю меру как классическую меру Лебега для точки, равную по смыслу Планковским единицам, выраженным дифференциалами:

(4.10)

Поскольку эфир связан воедино вечным настоящим, то все сингулярности, какова бы ни была их локализация в пространстве-времени, имеют один возраст – нулевой. Это не значит, что они возникли вместе с моментом Большого взрыва, это значит, что время в них не накапливается. Вселенная, что бы там внутри нее не происходило, покоится на эфире. Какова бы ни была плотность времени (возраст) в регионе, черная дыра в нем – это дыра в регионе к эфиру, будто гвоздь, вбитый в пространство-время и проходящий через все страты W . Он же, этот гвоздь. проходит и через все квантовые ИСО. Поэтому мы говорим, что Ахиллес должен через ускорение пройти сквозь все эти ИСО, становясь Орфеем, спускающимся в ад вечного настоящего.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Философия и логика времени"

Книги похожие на "Философия и логика времени" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Юрченко Борисович

Юрченко Борисович - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Юрченко Борисович - Философия и логика времени"

Отзывы читателей о книге "Философия и логика времени", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.